Добірка наукової літератури з теми "Themal"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Themal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Themal":

1

Tian, Yue Chao, Xi Liu, Hui Tang, Jing Long Bu, Dong Mei Zhao, Yue Jun Chen, and Li Xue Yu. "Improvement of Thermal Shock Resistance Performance of High Alumina Ceramic Filter Support." Advanced Materials Research 750-752 (August 2013): 525–28. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mullite-corundum multiphase ceramic materials were prepared at 1400°C for 2h with bauxite chamotte and clay clinker as raw material (size<74 μm), molded at pressure of 50 MPa. Effect of raw materials composition on sintering and themal shock resistance of composite were researched by measurements of apparent porosity, bending strength,thermal shock resistance and thermal expansion rates, and analysed by XRD and SEM. The results showed that the best weigh percentage of raw materials with better sintering and themal shock resistance are bauxite chamotte 50 wt%, clay clinker 50wt% for mullite-corundum multiphase ceramic materials. The test results for high temperature gas cleaning dust removal technology development and the application of the composite ceramic material has important application value.
2

Huang, Yuzhou, Jing Long Bu, Yue Jun Chen, and Zhi Fa Wang. "Research on Mullite-Corundum-Aluminium Titanate Composite." Advanced Materials Research 652-654 (January 2013): 308–11. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mullite-aluminium titanate-corundum composite was prepared at 1300°C with refractory clay, aluminium titanate and high alumina grog as raw material, molded at pressure of 50MPa. Effect of raw material ratio on sintering and themal shock resistance of the mullite-aluminium titanate-corundum composite was researched by measurements of apparent porosity, bending strength and residual strength after water-cool, and analyses of XRD and SEM. The results showed that as refractory clay content, apparent porosity of samples decrease, bulk density and bending strength increase. When the weight ratio of refractory clay, aluminium titanate and high alumina grog is 60/10/30, themal shock resistance of sample is excellent, The XRD and SEM analysis results indicated that the mechanical and thermal proprieties are relative to the microstructure and crystal phases of the composite materials.
3

Tkeuchi, Tetsuya, Yusuke Hirose, Ryoma Tsunoda, Fuminori Honda, and Rikio Settai. "Themal Expansion and Magnetostriction of YbAuCu4." Physics Procedia 75 (2015): 460–67. http://dx.doi.org/10.1016/j.phpro.2015.12.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhao, Ying Na, Gang Chang, Gang Liu, Hai Bo Song, and Wen Li Zhang. "Preparation of Mullite-Aluminum Titanate-Cordierite Multiphase Ceramics." Advanced Materials Research 750-752 (August 2013): 484–87. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mullite-aluminum titanate-cordierite multiphase ceramics were prepared by high alumina clinker, Aluminum Titanate and Cordierite. The sintering property and thermal shock resistance of composite materials were tested. The experimental results show that the sinter property and themal shock resistance of Mullite-aluminum titanate-cordierite multiphase ceramics are relatively preferably, which the materials composition are 30 wt.% high alumina clinker, 60 wt.% cordierite and 10 wt.% aluminum titanate. The component samples show porosity of 33.17%, volume density 1.9 % and normal temperature flexural strength 20.66 MPa. Thermal residual flexural strength of the samples is still as high as 10.29 Mpa by 5 times thermal residual tests, and there are only little flexural strength lower after three times earthquake test.
5

Xiaoke, Du, and Lou Ke. "A Simulation Platform for Vehicle Themal Management System." Journal of Physics: Conference Series 1325 (October 2019): 012008. http://dx.doi.org/10.1088/1742-6596/1325/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guo, Zhi Hong, Zhen Xi Wen, Qing Yan Xu, Yuan Tian, Gao Qiu, and Yi Min Wang. "Study on Themal and Rheological Properties of POM." Advanced Materials Research 487 (March 2012): 192–97. http://dx.doi.org/10.4028/www.scientific.net/amr.487.192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polyoxymethylene is a linear polymer with excellent performance due to its chemical structure and high crystallinity. The thermal and rheological properties of POM are investigated in this paper. Experimental results indicate that the melting point and decomposition temperature of POM are about 162 °C and 266 °C respectively. POM melt is a non-Newtonian fluid, the apparent viscosity gradually decreased with the increase of shear rate, showing a typical shear-thinning behavior. Non-Newtonian index increased from 0.53 to 0.61 as the melt temperature increased from 190 °C to 230 °C. The flow activation energy of POM melt is between 11.36 and 24.90 kJ/mol within the shear rate range of 90~2500s -1.
7

KATSUTA, Masafumi. "Some Aspects on the Themal Device using Phase Change." Reference Collection of Annual Meeting VIII.02.1 (2002): 310–11. http://dx.doi.org/10.1299/jsmemecjsm.viii.02.1.0_310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bandai, Hiroyuki, Masaki Morita, Masaki Watanabe, and Makoto Kobashi. "Advanced Themal Storage System and Material Development For Vehicles." Proceedings of the National Symposium on Power and Energy Systems 2016.21 (2016): D232. http://dx.doi.org/10.1299/jsmepes.2016.21.d232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liang, Yu Fei, and Zhen Hua Xue. "Effect on the Thermal Value and Inner Instructure of Biomass under Different Torrefaction Condiction." Advanced Materials Research 807-809 (September 2013): 795–99. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Torrefaction was a main pretreatment technology for improving the properties of biomass in order to deal with such problems as dispersed resource,High moisture content, High bulk volume and low heating value. This paper discussed torrefied temperature, time on thermal and infrared spectrum curve effect of Salix baking carbonand analysed DSC curve of Salix torrefied coal. The resultsshowed that the themal value was higher, with the temperature was increasing faster and the timewas longer, Meanwhile, the number of solid oxygencontaining functional groups in the solid product reduced.The significantly decreasing of the oxygen content improved the heat value of solid products.orrefaction was benefit to the improvement of energy property and material characteristicsof biomass and had a positive effect on the quality of biomass material.
10

Maltsev, A. A. "QUALITY CONTROL AND RELIABILITY OF LEDS IN SCATTER THEMAL PARAMETERS." Scientific and Technical Volga region Bulletin 6, no. 6 (December 2016): 86–88. http://dx.doi.org/10.24153/2079-5920-2016-6-6-86-88.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Themal":

1

McNeill, David William. "Semiconductor layer growth by rapid themal chemical vapour deposition." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Newton, Mark K. "The initial perception of humidity." Thesis, University of Portsmouth, 2011. https://researchportal.port.ac.uk/portal/en/theses/the-initial-perception-of-humidity(5c072ca2-6291-450a-a7ac-32c9d6ec1cbc).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stärk, Martin [Verfasser]. "Control of magnetic domains and domain walls by themal gradients / Martin Stärk." Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1111565201/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meek, Romney. "Synthesis and Characterization of Graphene-family Mesoporous Nanomaterials for Themal Energy Harvesting and Sensing Applications." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/3090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Graphene-family nanomaterials (GFNs) have attracted a great deal of attention both in academia and in industry for a range of applications relevant for homeland security. In this thesis, an array of graphene-based hybrid materials and aerogels are synthesized for use as novel thermo-electrochemical energy harvesters and for ascorbic acid biosensing devices. The graphene-family nanomaterials include graphene oxide-GO, thermally reduced GO-rGOth, nitrogenated functionalized graphene-NFG, graphene aerogel-GA, nitrogen-doped graphene aerogel-NGA, multi-walled carbon nanotube aerogel-MWCNT, single-walled carbon nanotube aerogel-SWCNT, graphene and nanotube combined ‘hybrid’ aerogels-Gr:(SW/MW)CNT of various ratios, along with multilayered nanostructured architectures such as gold (AuNP) and silver nanoparticles (AgNP) decorated NFG coated with a thin layer of polyaniline (PANi). Precursor aerogel materials were also analyzed to demonstrate the effect of mesoporous architectures and the interplay of various components in augmenting physical-chemical properties. These precursors were combined through multiple deposition schemes including electrodeposition, hydrothermal synthesis, and freeze drying techniques. This project was developed in an effort to enhance electrochemical properties through modification of the morphology, surface and structural properties, making them more suitable for thermal energy harvesting and bio-sensing applications. Hydrothermal synthesis created chemical bridged interfaces, interconnectedness, and improved electrical conductivity besides increasing the surface area of mesoporous aerogels created by freeze-drying. This causes an increase in the number density of electrochemically active sites. The surface morphology, lattice vibrations, and electrochemical activity of the materials were investigated using electron microscopy, micro-Raman Spectroscopy, and electrochemical microscopy techniques [namely cyclic voltammetry (CV), alternating current electrochemical impedance spectroscopy (acEIS), amperometric techniques, and scanning electrochemical microscopy (SECM)]. For thermoelectric and thermoelectrochemical power measurements, a custom-designed set up was made for creating a temperature gradient across two legs of a thermocell and experiments were performed in various device configurations (a) symmetric and asymmetric, (b) single thermocells, and (c) multiple (“in-tandem”) thermocells. Interestingly, we observed changes in conducting behavior from Ohmic to semiconducting and polarity shifts from positive to negative or vice versa on introduction of the redox electrolyte solution. The parametric correlations (thermopower and resistivity or conductivity) are established and the results are discussed in terms of the polarity switching behavior observed for some of the aerogels combinations.
5

Nagy, Hamed A. "Effect of simulated welding themal cycles on the mechanical and corrosion properties of P/M stainless steels /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488187049541973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moraes, Thiago Finotti de. "Implementação de protótipo de resfriador termoelétrico por efeito Peltier aplicado a dispositivos semicondutores de potência." Universidade Federal de Uberlândia, 2014. https://repositorio.ufu.br/handle/123456789/14598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
In any electrical or electronic circuit, thermal energy is a quantity that is always present and generally must be considered in the specifications of any application. In many cases, the heat from the Joule effect, as well as from other internal and irreversible losses, represent the biggest share of maximum heat that a system can dissipate under normal operation. In Power Electronics, the study and application of semiconductor power switches are particularly important. Many solutions have been developed over the years aiming to mitigate electrical losses and heat built-up in semiconductor power switches. It is important to state that the current amount of research available to academics and the general public into thermal effects on semiconductor power switches is not as wide as that concerning the applications of those switches. It is remarkably reduced the amount of work concerning active cooling of semiconductor power switches and components, as well as concerning the behavior of semiconductor power switches and components under active cooling. Thus, there is a lack of studies aiming the investigation of the behavior of electric switches under different thermal loads. Because of this lack, this work is focused on a proposal of an equipment actively cools semiconductor power switches used in Power Electronics, particularly those usually found in switched mode power supplies. The main purpose of this work is to develop an equipment for being used on a lab bench based on Peltier technology that sets thermal action on semiconductor power switches, making possible the evaluation of the behavior of these switches under different thermal exposures and temperatures. Fist, the Peltier technology was investigated and, later on, a solution was developed allowing the usage of this technology on semiconductor power switches. A detailed description and the calculations of the developed thermoelectric system are presented. The results of this work are presented as a comparative study of the behavior and limits of performance of MOSFETs in DC-DC Boost converters under active cooling compared to traditional passive heat sinks. During active cooling the MOSFET was cooled below ambient temperature, assuring its external thermal safety. The experimental results confirm the operation as intended. The main confirmed advantages were greater dissipated power, increase of thermal margin and capacity of actively transferring heat to an overloaded area to another place.
Em qualquer circuito elétrico ou eletrônico, a energia térmica é uma grandeza que está sempre presente e em geral deve ser levada em conta nas especificações de qualquer aplicação. Em vários casos, o calor decorrente do efeito joule, bem como de outras perdas internas e irreversíveis, representam a parcela mais impactante da quantidade de calor limítrofe que um sistema consegue dissipar em operação normal. São de particular importância em Eletrônica de Potência o estudo e a aplicação de chaves semicondutoras. Várias soluções têm sido desenvolvidas ao longo dos anos no sentido de mitigar as perdas elétricas em chaves semicondutoras, bem como o aumento de temperatura nas mesmas durante operação. É importante frisar que atualmente a quantidade de pesquisas disponíveis ao público acadêmico e geral sobre os efeitos térmicos em chaves semicondutoras não é tão ampla quanto sobre as aplicações dessas chaves. É particularmente reduzida a quantidade de trabalhos ligados ao resfriamento ativo de chaves e componentes elétricos, assim como de trabalhos voltados ao comportamento de chaves e componentes mediante resfriamento ativo. Sendo assim, existe uma carência de estudos que objetivem a investigação do comportamento de chaves semicondutoras mediante distintas cargas térmicas. Diante desta carência, o foco deste trabalho é apresentar uma proposta de equipamento que atue termicamente, seja aquecendo ou resfriando, sobre chaves semicondutoras utilizadas em eletrônica de potência, particularmente aquelas comumente usadas em fontes elétricas chaveadas. O objetivo principal deste trabalho é desenvolver um equipamento para uso em bancada baseado na tecnologia Peltier que resfrie ativamente chaves semicondutoras, possibilitando a avaliação de comportamento das mesmas mediante diferente exposições térmicas e temperaturas. Primeiramente a tecnologia Peltier foi investigada e, posteriormente, foi desenvolvida uma solução que permite a utilização desta tecnologia em dispositivos semicondutores de distintos encapsulamentos. Uma descrição detalhada e os cálculos de dimensionamento do sistema termoelétrico desenvolvido são apresentados. Os resultados deste trabalho são apresentados em forma de estudo comparativo sobre o comportamento e limites de desempenho de MOSFETs em conversores CC-CC Boost mediante resfriamento ativo frente aos tradicionais dissipadores passivos. Durante resfriamento ativo o MOSFET foi resfriado à temperatura subambiente e constante, garantindo sua a segurança térmica relacionada à temperatura do encapsulamento. Os resultados experimentais confirmam a operação do protótipo conforme a proposta deste trabalho. As principais vantagens confirmadas foram maior potência dissipada, aumento da margem térmica e capacidade de transferir ativamente calor de uma área sobrecarregada para outro local.
Mestre em Ciências
7

Sonar, Shilpa. "Abatement of toluene through storage-regeneration sequential process : application of thermal and plasma assisted catalytic regeneration." Thesis, Université de Lille (2018-2021), 2021. https://pepite-depot.univ-lille.fr/ToutIDP/EDSMRE/2021/2021LILUR064.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le toluène est un composé organique volatil (COV) toxique présent dans les environnements intérieurs et extérieurs. La dépollution du toluène se fait généralement par adsorption ou oxydation catalytique. Dans ce dernier cas, le toluène est converti en CO2 et H2O, mais des espèces toxiques peuvent s'accumuler sur les catalyseurs, provoquant leur empoisonnement, leur désactivation et leur frittage. Pour surmonter ces inconvénients, nous proposons des procédés hybrides innovants de "stockage-régénération". Il s’agit de procédés séquentiels basés l’adsorption suivie de l'oxydation catalytique activée soit thermiquement (ATC) ou par un plasma (APC). Ces procédés sont divisés en deux étapes : "L'étape de stockage où le toluène gazeux est adsorbé sur la surface du matériau et l'étape d'oxydation où le toluène adsorbé est converti catalytiquement en CO2 et H2O dans un environnement thermique ou plasma. Le processus ATC a été testé sur de l'hopcalite commerciale (CuMnOx), de la Cérine-NR et de l'UiO-66-SO3H. L'hopcalite se distingue des autres par sa grande capacité d'adsorption "utile" et ses propriétés redox, permettant une activité et une sélectivité en CO2 élevées dans l'oxydation du toluène. Dans le procédé APC, la morphologie de la poudre et le manque d'effet de synergie dans la Cérine-NR et l'UiO-66-SO3H ne permettent pas de générer un plasma stable. Ainsi, seule l'Hopcalite a été étudiée de manière approfondie en APC. Il est observé que l'activité d'oxydation du toluène adsorbé est significativement affectée par les variables du procédé. La stabilité du matériau a été étudiée dans les deux cas au moyen de différentes techniques de caractérisation et il a été confirmé que les matériaux Hopcalite sont très stables. L'activité catalytique a été améliorée par l'imprégnation d'une phase active telle que l'argent, ce qui a conduit à une augmentation de la sélectivité et du rendement en CO2 avec une charge d'argent très faible, tant dans l'ATC que dans l'APC. Un examen approfondi du matériau a révélé qu'un bon équilibre entre la capacité d'adsorption et l'activité catalytique (Cu2+,3+ et Mn3+,4+) est nécessaire. De plus, le coût énergétique de l'APC se situe dans une fourchette acceptable (11.6 kWh-m-3), ce qui signifie qu'avec une optimisation supplémentaire des différents paramètres expérimentaux, il peut être facilement mis à l'échelle de manière rentable. L'ATC et l'APC permettent tous deux d'atteindre une efficacité de réduction du toluène et de conversion en CO2 supérieure à 95 % au premier passage et à 75 % pour les matériaux stabilisés. Ces résultats montrent que les deux procédés ATC et APC pourraient être des procédés prometteurs de réduction du toluène, efficaces sur le plan énergétique, et ouvrent la voie à de nouveaux développements et à une mise à l'échelle
Toluene is a toxic volatile organic compound (VOC) present in indoor and outdoor environments. The abatement of toluene is typically done by adsorption or catalytic oxidation. In the latter case, toluene is converted into CO2 and H2O, but toxic species can build up on catalysts, causing poisoning, deactivation, and sintering. To overcome these drawbacks, we propose innovative “storage-regeneration” hybrid processes based on sequential adsorption-thermal catalytic oxidation (ATC) and sequential adsorption-plasma catalysis (APC). These processes are divided into two steps: “storage step” where gaseous toluene adsorbed on the surface of material and “oxidation step” where the adsorbed toluene species is catalytically converted into CO2 and H2O in thermal or plasma environment. ATC process was tested on commercial Hopcalite (CuMnOx), Ceria-NR and UiO-66-SO3H. Hopcalite stands out from others owing to its high “useful” adsorption capacity and redox properties, allowing a high activity and CO2 selectivity in toluene oxidation. In APC process, the powder morphology and lack of synergy effect in Ceria-NR and UiO-66-SO3H does not allow to generate stable plasma. Thus only Hopcalite has been studied in depth in APC. It is observed that the oxidation activity of the adsorbed toluene is significantly affected by the process variables. The stability of material was investigated in both cases, and it was confirmed that Hopcalite materials are very stable as evidenced by various characterization techniques. The catalytic activity was enhanced by impregnating active phase such as silver which led to improvement in the CO2 selectivity and CO2 yield at very low silver loading in both ATC and APC. A thorough examination of the material revealed that a good balance of adsorption capacity and catalytic activity (Cu2+,3+ and Mn3+,4+) is required. Moreover, the energy cost of APC is in the range of acceptable level (11.6 kWh·m−3) as a result with further optimization in different experimental parameters, it can be easily scalable in cost-effective manner. Both ATC and APC allow to reach toluene abatement efficiency and conversion to CO2 above 95 % on first run and 75% on stabilized materials. These results show that both ATC and APC process could be a promising energy-efficient toluene abatement processes and open the path for further development and scale-up
8

Cavalcante, Miquelina Rodrigues Castro. "Avaliação da qualidade térmica de praças em Maceió Alagoas : três estudos de caso." Universidade Federal de Alagoas, 2007. http://repositorio.ufal.br/handle/riufal/672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of this work is to evaluate the thermal quality of urban squares in Maceió city, AL, Brazil, and its relationship with the use of those areas and the thermal sensation of the users. The adopted procedures were the bibliographic review and a field research. In the bibliografic review was set the theoretical reference: the squares´ characteristics, the urban climate and its relationship with human thermal confort. To charachterize those squares it was used the concept of Robba and Macedo´s SQUARE (2002). As a field research after an inventory of the squares in Maceió, AL these squares were chosen and analyzed: Ricardo Lessa´s square, in Tabuleiro dos Martins district; Tenente Madalena´s square, in Cruz das Almas district; and Muniz Falcão´s square, in Ponta Verde´s district. Climate variables were measured and questionnaires were applyed, and behaviour maps were built for January and February, 2006. As thermal confort index it was used the parameters proposed by Fanger (1970). It has been found that thermal quality in square areas is an important factor for their use, specially because they refer to leasure and relaxing areas. This study represents an effort to raise questions and should continue as an investigation object.
Fundação de Amparo a Pesquisa do Estado de Alagoas
O presente trabalho tem como objetivo avaliar a qualidade térmica de praças na cidade de Maceió - AL e a sua relação com a utilização destes espaços e a sensação térmica dos usuários. Os procedimentos utilizados foram a pesquisa bibliográfica e documental e a pesquisa de campo. Na pesquisa bibliográfica e documental foi demarcado o referencial teórico: as características de praças, do clima urbano e a sua relação com o conforto térmico humano. Para caracterizar as praças foi usado o conceito de PRAÇA de Robba e Macedo (2002). Na pesquisa de campo, após a elaboração de um inventário das praças de Maceió-AL, foram escolhidas e analisadas as praças Ricardo Lessa, no Bairro Tabuleiro do Martins; Tenente Madalena, no Bairro Cruz das Almas; e Muniz Falcão, no Bairro Ponta Verde. Foram realizadas medições de variáveis climáticas, aplicados questionários e construídos mapas comportamentais nos meses de janeiro e fevereiro de 2006. Como Índice de Conforto Térmico foram utilizados os parâmetros estabelecidos por Fanger (1970). Ficou comprovado que a qualidade térmica dos espaços nas praças é um importante fator para a sua utilização, principalmente quando se trata de uma área destinada ao lazer e descanso. Em virtude dos limites e dificuldades, este estudo representa esforço de reflexão e um levantamento de questões que devem continuar sendo objeto de investigação.
9

Bärenfänger, Maja [Verfasser]. "Ebenen des Themas : Zur Interaktion von Thema, Text und Wissen / Maja Bärenfänger." Gießen : Universitätsbibliothek, 2012. http://d-nb.info/1064760600/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Hua. "Saline, thermal and thermal-saline buoyant jets." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21325.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Themal":

1

Šesták, Jaroslav, Pavel Hubík, and Jiří J. Mareš, eds. Thermal Physics and Thermal Analysis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45899-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hoeneisen, Bruce. Thermal physics. San Francisco: EM Text, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Noda, Naotake. Thermal stresses. 2nd ed. New York: Taylor & Francis, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Finn, C. B. P. Thermal physics. London: Routledge, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Finn, C. B. P. Thermal physics. 2nd ed. London: Chapman & Hall, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Finn, C. B. P. Thermal physics. London: Chapman and Hall, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meskó, Csaba. Thermal baths. Budapest: City Hall, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Canada. Energy, Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baierlein, Ralph. Thermal physics. Cambridge, U.K: Cambridge University Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

MSI. Thermal insulation. Chester: Marketing Strategies for Industry, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Themal":

1

Bonduelle, B., and A. M. Cazin-Bourguignon. "Themis Receiver: Thermal Losses and Performance." In Solar Thermal Central Receiver Systems, 273–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82910-9_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Andersson, Mats, Heinz Jacobs, Ricardo Carmona, Clifford S. Selvage, Pierre Wattiez, Antonio Cuadrado, Sevillana, T. van Steenberghe, John J. Kraabel, and F. Gaus. "Thermal Losses/Thermal Inertia." In The IEA/SSPS Solar Thermal Power Plants — Facts and Figures — Final Report of the International Test and Evaluation Team (ITET), 429–587. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82678-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bährle-Rapp, Marina. "thermal." In Springer Lexikon Kosmetik und Körperpflege, 553. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_10488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sprackling, Michael. "Thermodynamic potential functions." In Thermal physics, 132–44. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sprackling, Michael. "Heat capacity." In Thermal physics, 145–74. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sprackling, Michael. "The application of thermodynamics to some simple systems." In Thermal physics, 175–209. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sprackling, Michael. "Equations of state." In Thermal physics, 210–27. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sprackling, Michael. "Phase changes." In Thermal physics, 228–46. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sprackling, Michael. "The third law of thermodynamics." In Thermal physics, 247–55. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sprackling, Michael. "The application of thermodynamics to some irreversible processes." In Thermal physics, 256–79. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-21377-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Themal":

1

Peuse, Bruce W., and Allan Rosekrans. "Rapid themal processing using in-situ wafer thermal expansion measurement for temperature control." In Microelectronic Processing '93, edited by James A. Bondur, Kiefer Elliott, John R. Hauser, Dim-Lee Kwong, and Asit K. Ray. SPIE, 1994. http://dx.doi.org/10.1117/12.167351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cadafalch, Jordi, A. González Valero, R. Cònsul, and R. Ruiz. "Open Data Solar Themal Meter for Smart Cities." In EuroSun2016. Freiburg, Germany: International Solar Energy Society, 2016. http://dx.doi.org/10.18086/eurosun.2016.04.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sun, Liyong. "ENHANCING STUDENTS LEARNING IN THEMAL-FLUID SCIENCES COURSES THROUGH DAILY LIFE EXAMPLES." In 5-6th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2021. http://dx.doi.org/10.1615/tfec2021.edu.032230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Falcao, Elvis, and Guilherme Ribeiro. "Thermodynamic Optimization of a Heat Exchanger used in Themal Cycles Applicable for Space Systems." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-0540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Torabi, Atousa, and Guillaume-Alexandre Bilodeau. "Local self-similarity as a dense stereo correspondence measure for themal-visible video registration." In 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE, 2011. http://dx.doi.org/10.1109/cvprw.2011.5981751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Murakami, Akinobu, and Akira Hoyano. "Study on Urban Heat Island Phenomenon in a Local Small City of Japan using Airborne Themal Image." In IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008. http://dx.doi.org/10.1109/igarss.2008.4779611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Thenmalar, K., and A. Allirani. "Solution of firefly algorithm for the economic themal power dispatch with emission constraint in various generation plants." In 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT). IEEE, 2013. http://dx.doi.org/10.1109/icccnt.2013.6726808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Song, Jiaxing, Yu-Min Lee, and Chia-Tung Ho. "ThermPL: Thermal-aware placement based on thermal contribution and locality." In 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2016. http://dx.doi.org/10.1109/vlsi-dat.2016.7482538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Price, Donald C., W. Gerald Wyatt, Pete Townsend, Mark C. Woods, and Brad W. Fennell. "Design of a Transient, Temperature Control System for a Low-Temperature Infrared Optical Telescope Utilizing a Ramai R-Cooled Thermoelectric Assembly as the Condenser of a Two-Phase Cooling System." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The design of a thermal management system for an airborne, infrared, optical telescope system is described. This system provides transient thermal management for the optical elements of the system beginning at a high-temperature soak condition of 71°C (159.8°F) on the ground to a low-temperature operating condition of −30°C (−22°F) to −40°C (−40° F) within 45 min after aircraft takeoff. An active cooling system is employed to enable this rapid cooldown. In addition to the low-temperature requirement, the mirrors and lenses must be cooled so that temperature gradients across the optical elements are on the order of 1°C (33.8 °F) to 2°C (35.6 °F). The ambient air available for ground cooling is specified by the military environment to be 55°C (131.0 °F). As the aircraft takes off and climbs to an altitude of 11,582.4 m (38 kft), the ambient air temperature decreases to a low-temperature of −22°C (−7.6 °F) for steady, level flight at at Mach 0.9, this ambient air temperature results in a ram air inlet temperature on the order of 13.5°C (56.3 °F), after the air is captured and diffused to Mach 0.2 prior to entry into a ram air heat exchanger. This ram air heat sink is used to provide a chilled liquid for cooling of optical elements and the turret housing the system. The low temperatures required for this system, which are on the order of −30°C (−22 °F) to −40°C (−40 °F), make the use of forced-convection, liquid-cooling problematic because of the tendancy of liquids to become quite viscous as they approach these low temperature levels. Furthermore, the use of a single-phase heat transfer process will result in temperature gradients within the system. For these reasons, cooling concepts employing single-phase cooling using chilled-liquids have been eliminated from consideration. A low-temperature, low-pressure refrigerant, R-404a, is used as the working fluid. The themal management system uses the optical elements as the evaporator of a two-phase cooling system. The liquid refrigerant is introduced into the optical elements at the saturation temperature and saturation pressure of the liquid. The flow rate of the refrigerant will be controlled in such a manner that all of the heat transfer takes place in the liquid-vapor mixture region of the thermodynamic diagram for R-404a with the refrigerant exiting the elements at an arbitraily determned quality of approximately 0.8. This will assure that all of the heat transfer will be by boiling heat transfer and will take place at a constant temperature and essentially a constant pressure. Since the heat transfer coefficients are large and the process takes place at essentially a constant temperature, the optical elements will be controlled at the saturation temperature of the refrigerant and will be essentially a constant temperature across the expanse of the optical surface. The thermal management system is comprised of an array of TECs configured as a condenser HX. This TEC HX uses ram air as the eventual heat sink and will provide chilled-liquid produced by a liquid-to-ram air HX as the heat sink for the hot side of the TEC array. This system utilizes the system mass as the evaporator and a TEC HX as the condenser in a two-phase heat transfer process to provide rapid cooldown of the system mass to low temperatures in a short period of time and maintain that mass at proper operating temperatures with essentially zero temperature gradients throughout the system.
10

Ezzahri, Younes, and Ali Shakouri. "Solid-state microrefrigeration in conjonction with liquid cooling." In 2008 Second International Conference on Thermal Issues in Emerging Technologies (ThETA). IEEE, 2008. http://dx.doi.org/10.1109/theta.2008.5167156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Themal":

1

Amri, A., M. Izygon, and B. Tedjiza. Central Receiver Plant Evaluation: IV, THEMIS Thermal Storage Subsystem Evaluation. Office of Scientific and Technical Information (OSTI), February 1988. http://dx.doi.org/10.2172/5228605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weathered, M., D. Kultgen, E. Kent, C. Grandy, T. Sumner, A. Moisseytsev, and T. Kim. Thermal Hydraulic Experimental Test Article - Report of THETA Commissioning for METL Testing. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1778938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guidotti, R. A., and M. Moss. Thermal conductivity of thermal-battery insulations. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/102467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wilkinson, A., and A. E. Taylor. Thermal Conductivity. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Catherino, Henry A. Thermal Runaway. Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada460694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cullen, D. E. THERMAL: A routine designed to calculate neutron thermal scattering. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/64145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bentz, Dale P., Amanda Forster, Kirk Rice, and Michael Riley. Thermal properties and thermal modeling of ballistic clay box. Gaithersburg, MD: National Institute of Standards and Technology, 2011. http://dx.doi.org/10.6028/nist.ir.7840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Glascoe, E. A., H. C. Turner, and A. E. gash. Thermal Analysis and Thermal Properties of ANPZ and DNDMP. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1182242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, Gerald. Thermal / structural analysis of the HB 650 thermal shield. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Imhoff, Seth. Uranium Density, Thermal Conductivity, Specific Heat, and Thermal Diffusivity. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1768421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії