Добірка наукової літератури з теми "Vertebral axis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Vertebral axis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Vertebral axis":

1

Kaushal, Parul, and Subhash Bhukya. "Fusion of C2 and C3: embryological and clinical perspective." Anatomy Journal of Africa 7, no. 2 (September 19, 2018): 1281–83. http://dx.doi.org/10.4314/aja.v7i2.177636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Skeletal abnormalities in the upper cervical region may result in severe neck ache, altered mobility, muscular weakness and sensory deficits. Fused cervical vertebrae (FCV) have been reported in literature, however cases with fused articular facets have scarcely been documented. During routine osteology demonstration, we came across fused axis and the 3rd cervical vertebra. There was complete fusion of the vertebral arch on the left side along with complete fusion between the inferior articular facet of C2 and superior articular facet of C3. There was partial fusion between the bodies of the vertebrae and the right half of the vertebral arch. Owing to the vital role of this region in various neck movements and spinal alignment, knowledge of such asymmetric variations in the upper cervical region, is of immense importance to orthopedicians, radiologists, neurosurgeons, anaesthetists, physiotherapists.Keywords: intubation, synostosis, axis, block vertebrae
2

Holt, C. A., S. L. Evans, D. Dillon, and S. Ahuja. "Three-Dimensional Measurement of Intervertebral Kinematics in Vitro Using Optical Motion Analysis." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 219, no. 6 (June 1, 2005): 393–99. http://dx.doi.org/10.1243/095441105x34374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Measurement of the stiffness of spinal motion segments is widely used for evaluating the stability of spinal implant constructs. A three-dimensional motion analysis technique has been developed that allows accurate measurement of the relative movement of the vertebral bodies about a well-defined anatomical axis system. The position of marker clusters on each vertebra is tracked using digital infrared cameras (Qualisys AB, Gothenburg). Landmarks are identified using a marked pointer, and an anatomical coordinate system is defined for each vertebra. The transformation relating the upper and lower vertebrae is calculated, using the joint coordinate system approach of Grood and Suntay to find the rotations and translations in each anatomical plane. The stiffness of vertebrectomy constructs was investigated using a Synex vertebral body replacement and an anterior rod with one or two screws in each vertebral body, with or without damage to the posterior longitudinal ligament (PLL). A moment of 2 N m was applied about each anatomical axis, and the range of motion about each axis was calculated. The range of motion in flexion-extension and lateral bending was significantly greater with only one screw. When the PLL was cut, there was no significant increase in the range of motion.
3

Dhakal, Arun, P. Adhikari, N. Ranjit, and D. Budhathoki. "Morphometry of Dry Sub Axial Vertebra: A Nepalese Study." Nepal Medical College Journal 23, no. 1 (April 2, 2021): 48–54. http://dx.doi.org/10.3126/nmcj.v23i1.36228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is paucity in literature describing the morphology of sub-axial vertebra of the local population. Available studies are limited to the body, intervertebral disk, spinal canal and Torg’s ratio of the cervical vertebra. Therefore, the present study aims to document various morphological parameters of sub axial vertebra. Sixty-four dry sub-axial vertebrae of the Nepalese population were studied using Vernier Calipers calibrated to 0.1 mm accuracy. Paired parameters of pedicle, lamina, uncinate process, the distance of the apex of the uncinate process to intervertebral foramen and foramen transversarium were measured. Similarly, unpaired parameters including spinous process length, vertebral foramen anteroposterior width, vertebral foramen transverse diameter and Torg’s ratio were evaluated. Except the height of left lamina of C3 to C6 vertebrae, none of the parameters showed significant side differences. Significant higher values of C7 were noted against C3-C6 on vertebral body height, vertebral body anteroposterior diameter, spinous process length and vertebral foramen anteroposterior diameter. Population data of sub-axial vertebra available in literature showed mixed results with ours. Interestingly, our observations either compared to (lamina, uncinate process, anteroposterior diameter of spinal canal and Torg’s ratio) or were larger (Pedicle and spinous process) than the Indian study with pedicle axis length being largest among all the compared studies. The information of this study may be used as a reference database for our local setting and could be of value in preoperative planning and in designing implants.
4

Wong, Siew Fen Lisa, Vikram Agarwal, Jennifer H. Mansfield, Nicolas Denans, Matthew G. Schwartz, Haydn M. Prosser, Olivier Pourquié, David P. Bartel, Clifford J. Tabin, and Edwina McGlinn. "Independent regulation of vertebral number and vertebral identity by microRNA-196 paralogs." Proceedings of the National Academy of Sciences 112, no. 35 (August 17, 2015): E4884—E4893. http://dx.doi.org/10.1073/pnas.1512655112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Hox genes play a central role in patterning the embryonic anterior-to-posterior axis. An important function of Hox activity in vertebrates is the specification of different vertebral morphologies, with an additional role in axis elongation emerging. The miR-196 family of microRNAs (miRNAs) are predicted to extensively target Hox 3′ UTRs, although the full extent to which miR-196 regulates Hox expression dynamics and influences mammalian development remains to be elucidated. Here we used an extensive allelic series of mouse knockouts to show that the miR-196 family of miRNAs is essential both for properly patterning vertebral identity at different axial levels and for modulating the total number of vertebrae. All three miR-196 paralogs, 196a1, 196a2, and 196b, act redundantly to pattern the midthoracic region, whereas 196a2 and 196b have an additive role in controlling the number of rib-bearing vertebra and positioning of the sacrum. Independent of this, 196a1, 196a2, and 196b act redundantly to constrain total vertebral number. Loss of miR-196 leads to a collective up-regulation of numerous trunk Hox target genes with a concomitant delay in activation of caudal Hox genes, which are proposed to signal the end of axis extension. Additionally, we identified altered molecular signatures associated with the Wnt, Fgf, and Notch/segmentation pathways and demonstrate that miR-196 has the potential to regulate Wnt activity by multiple mechanisms. By feeding into, and thereby integrating, multiple genetic networks controlling vertebral number and identity, miR-196 is a critical player defining axial formulae.
5

Morin-Kensicki, Elizabeth M., Ellie Melancon, and Judith S. Eisen. "Segmental relationship between somites and vertebral column in zebrafish." Development 129, no. 16 (August 15, 2002): 3851–60. http://dx.doi.org/10.1242/dev.129.16.3851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The segmental heritage of all vertebrates is evident in the character of the vertebral column. And yet, the extent to which direct translation of pattern from the somitic mesoderm and de novo cell and tissue interactions pattern the vertebral column remains a fundamental, unresolved issue. The elements of vertebral column pattern under debate include both segmental pattern and anteroposterior regional specificity. Understanding how vertebral segmentation and anteroposterior positional identity are patterned requires understanding vertebral column cellular and developmental biology. In this study, we characterized alignment of somites and vertebrae, distribution of individual sclerotome progeny along the anteroposterior axis and development of the axial skeleton in zebrafish. Our clonal analysis of zebrafish sclerotome shows that anterior and posterior somite domains are not lineage-restricted compartments with respect to distribution along the anteroposterior axis but support a ‘leaky’ resegmentation in development from somite to vertebral column. Alignment of somites with vertebrae suggests that the first two somites do not contribute to the vertebral column. Characterization of vertebral column development allowed examination of the relationship between vertebral formula and expression patterns of zebrafish Hox genes. Our results support co-localization of the anterior expression boundaries of zebrafish hoxc6 homologs with a cervical/thoracic transition and also suggest Hox-independent patterning of regionally specific posterior vertebrae.
6

Yanni, Daniel S., and Noel I. Perin. "Fixation of the Axis." Neurosurgery 66, suppl_3 (March 1, 2010): A147—A152. http://dx.doi.org/10.1227/01.neu.0000365743.16893.ea.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract OBJECTIVE To review and compare the techniques of fixation of the axis vertebral segment. Also, to review the anatomy of the axis vertebrae, ligamentous attachments, and unique biomechanics of this segment. METHODS The use of wire, cable, screw, and plate fixation techniques are reviewed and discussed in the treatment of fractures of C1 and C2 along with utilization of the halo vest and cervical collar during the postoperative period. RESULTS All fixation methods were useful. However, the appropriate fixation technique is best determined by the local anatomy (eg, anomalous vertebral artery), posterior element fractures, or the necessity to remove the posterior elements for treatment of the underlying condition. CONCLUSION New techniques for fixation and instrumentation for fixation of the axis are available. Advanced imaging allows for advanced aggressive instrumentation while avoiding injury to adjacent structures. Biomechanical studies have influenced the utility and popularity of each technique.
7

Saba, N., A. Rani, G. Sehgal, Rk Verma, Ak Srivastava, and M. Faheem. "Fusion of axis with third cervical vertebra: a case report." Romanian Neurosurgery 30, no. 2 (June 1, 2016): 284–88. http://dx.doi.org/10.1515/romneu-2016-0044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Introduction: Fusion of one or more contiguous vertebral segments is usually the result of embryological failure of normal spinal segmentation. It may be associated with syndromes such as Klippel-Feil. Fused cervical vertebrae (FCV) may also be acquired or pathologic. FCV is generally associated with disease like tuberculosis, other infections, juvenile rheumatoid arthritis and trauma. The commonest site of involvement is C2-C3. In condition of fusion the two vertebrae appear not only structurally as one but also function as one. This anomaly may be asymptomatic; however, it may also manifest in the form of serious clinical features such as myelopathy, limitation of the neck movement, muscular weakness, atrophy or neurological sensory loss. Case report: We observed the fusion of axis with 3rd cervical vertebra. Body, laminae and spines of C2 and C3 were completely fused on both anterior and posterior aspects, whereas the pedicles and transverse processes were not fused. Foramen transversarium was present on both the vertebrae bilaterally. Conclusion: This variation is noteworthy to neurosurgeons and radiologists in studying computed tomography (CT) and magnetic resonance imaging (MRI) scans.
8

Brink, Rob C., Jelle F. Homans, Tom P. C. Schlösser, Marijn van Stralen, Koen L. Vincken, Lin Shi, Winnie C. W. Chu, Max A. Viergever, René M. Castelein, and Jack C. Y. Cheng. "CT-based study of vertebral and intravertebral rotation in right thoracic adolescent idiopathic scoliosis." European Spine Journal 28, no. 12 (September 11, 2019): 3044–52. http://dx.doi.org/10.1007/s00586-019-06138-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Purpose To define the longitudinal rotation axis around which individual vertebrae rotate, and to establish the various extra- and intravertebral rotation patterns in thoracic adolescent idiopathic scoliosis (AIS) patients, for better understanding of the 3D development of the rotational deformity. Methods Seventy high-resolution CT scans from an existing database of thoracic AIS patients (Cobb angle: 46°–109°) were included to determine the vertebral axial rotation, rotation radius, intravertebral axial rotation, and local mechanical torsion for each spinal level, using previously validated image processing techniques. Results For all levels, the longitudinal rotation axis, from which the vertebrae rotate away from the midline, was localized posterior to the spine. The axis became closer to the spine at the apex: apex, r = 11.5 ± 5.1 cm versus two levels above (radius = 15.8 ± 8.5 cm; p < 0.001) and beneath (radius = 14.2 ± 8.2 cm; p < 0.001). The vertebral axial rotation, intravertebral axial rotation, and local mechanical torsion of the vertebral bodies were largest at the apex (21.9° ± 7.4°, 8.7° ± 13.5° and 3.0° ± 2.5°) and decreased toward the neutral, junctional zones (p < 0.001). Conclusion In AIS, the vertebrae rotate away around an axis that is localized posterior to the spine. The distance between this axis and the spine is minimal at the apex and increases gradually to the neutral zones. The vertebral axial rotation is accompanied by smaller amounts of intravertebral rotation and local mechanical torsion, which increases toward the apical region. The altered morphology and alignment are important for a better understanding of the 3D pathoanatomical development of AIS and better therapeutic planning for bracing and surgical intervention. Graphic abstract These slides can be retrieved under Electronic Supplementary Material.
9

Hirabayashi, Shigeru, and Kiyoshi Kumano. "FINITE ELEMENT ANALYSIS OF THE SPACE CREATED BY SPLIT SPINOUS PROCESSES IN DOUBLE-DOOR LAMINOPLASTY TO OPTIMIZE SHAPE OF AN ARTIFICIAL SPACER." Journal of Musculoskeletal Research 04, no. 01 (March 2000): 47–54. http://dx.doi.org/10.1142/s0218957700000070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In double-door laminoplasty, several types of artificial spinous process spacers have been used instead of grafted bone from the iliac crest. However, inadequate contact between the spacer and the spinous process has recently been reported. From the observation during operation, we suspect that the main cause of the inadequate contact is the difference in shape between the spacer and the widened space created by the split spinous processes. The purpose of this study was to investigate the shape of the widened space by means of a finite element analysis in order to confirm our observation objectively and to provide a shape design of a spacer adapting to the space. Half-sectioned finite element models of the second cervical (C2) vertebra and the C6 vertebra were made from both the computed tomography (CT) of a clinical case and a plastic model of a cervical spine. The finite element model was designed to have almost the same size and shape as those of the genuine vertebra in the clinical case. Since cancellous bone and soft tissues were thought not to meaningfully influence the rigidity of the model, the model was made of only cortical bone with a thickness of 1.5 mm. The x-axis was defined as the lateral direction of the vertebral body, the y-axis as the anteroposterior direction of the vertebral body and the z-axis as the craniocaudal direction along the posterior margin of the vertebral body. The boundary conditions were fixed at the inner surface of the half-sectioned vertebral body. A force of 100 N was applied to the inner surface of the half-sectioned spinous process (to the cranial side and the caudal side, 50 N each) in the direction of the x-axis. The lateral deviation of each split spinous process was defined as the degree of deviation in the x-axis direction. The degree of lateral deviation of each split spinous process was analyzed in two types of models with and without making a lateral gutter 4 mm wide along the z-axis direction. The lateral deviation at the cranial side was larger than that at the caudal side in both the C2 and C6 vertebrae. The difference between the lateral deviation at the cranial side and the caudal side of each vertebra was larger in the type of model with the lateral gutter than in the type of model without it. It was confirmed that the shape of the widened space is trapezoidal in not only the axial but also frontal sections. In conclusion, the optimal shape of a spacer adapting to the widened space in double-door laminoplasty is trapezoidal in not only the axial but also frontal sections.
10

Kaur, Jasveen, Mamta Sharma, Poonam Singh, and Ajay Kumar. "MORPHOMETRY OF THE VERTEBRAL CANAL OF ATLAS AND AXIS." International Journal of Anatomy and Research 5, no. 4.3 (December 1, 2017): 4711–15. http://dx.doi.org/10.16965/ijar.2017.454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Vertebral axis":

1

Leprévost, Amandine. "Développement et minéralisation de l’axe vertébral de l’esturgeon sibérien Acipenser baerii, et étude de l’impact de facteurs d’élevage sur la minéralisation du squelette en lien avec l’apparition de déformations axiales." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les esturgeons sibériens (Acipenser baerii) élevés dans les piscicultures françaises présentent des déformations de la colonne vertébrale qui conduisent en quelques mois à leur mort. Ces dernières affectent environ 5% des individus chaque année, entre le sexage (vers 3 ans) et la production de caviar (7-9 ans). Bien qu'elles occasionnent des pertes financières importantes pour les éleveurs, les causes de ces déformations restent inconnues. En se basant sur de précédents travaux réalisés chez les poissons téléostéens, l'hypothèse a été émise que divers facteurs d'élevage pourraient influencer la minéralisation du squelette de l'esturgeon, elle-même en lien avec la santé vertébrale. Une revue des connaissances a toutefois mis en évidence le caractère unique du squelette axial des acipensériformes par rapport à celui des autres "poissons", ainsi que le manque de connaissances le concernant. Le développement, la minéralisation et l'architecture de l'axe vertébral d'Acipenser baerii ont donc été décrits à différents niveaux d'intégration (morphologie, histologie, ultrastructure, nature de la phase minérale), avant de tenter d'identifier les facteurs responsables des déformations. Un tissu minéralisé, jusqu'alors inconnu, a été découvert dans la chorde et a fait l'objet d'une étude séparée. Des résorptions ostéoclastiques ont été observées au niveau des écussons, pouvant indiquer un trouble du métabolisme phospho-calcique. Enfin, des expérimentations sur sites ont apporté un nouvel éclairage sur les raisons pour lesquelles les individus ne sont pas tous affectés de manière uniforme dans les élevages concernés par les déformations, et pourquoi d'autres élevages sont épargnés
Siberian sturgeons (Acipenser baerii) reared in French fish farms often show deformities of the vertebral column that often lead to death. About 5% of the specimens are affected each year between sexing (around 3 years old) and caviar production (around 7-9 years old). Although these deformities constitute a major financial loss for fish farmers, the causative factors are still unknown. Based on previous studies on teleost fishes, we hypothetized that in sturgeons, various rearing factors may also influence skeletal mineralization and as a consequence "vertebral health". However, a review of current knowledge on the vertebral axis in Acipenseriformes highlighted its uniqueness compared to the vertebral axis of other "fish" species and the poor knowledge on it. Development, mineralization and architecture of Acipenser baerii vertebral axis were therefore studied at various integration levels (morphology, histology, ultrastructure, natural of the mineral phase), prior to try to identify the causative factors of deformities. A so-far unknown, mineralized tissue was discovered within the notochord and was the subject of a separate study. Osteoclastic resorptions were observed on scutes and may witness of some disorder of the phospho-calcic metabolism. Finally, in situ experimentations brought new insights on why all sturgeons are not uniformly affected by deformities in the fish farms concerned, and why some other fish farms are spared
2

Hitchcock, Edward C. (Edward Curtice). "The anterior-most vertebrae and occiput of Eusthenopteron : implications in the origin of the tetrapod atlas-axis complex." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The anterior-most elements of the vertebral column of Eusthenopteron foordi are examined by direct observation of articulated material. Large blade-like supraneural spines are present above neural arches 1, 3, and 5, but not 2 or 4. The supraneural spines support a muscular complex involved in feeding, not only through raising the snout, but also in depressing the lower jaws by the forward swing of the quadrate. The similarity in skulls of osteolepiforms, and between osteolepiforms and Paleozoic tetrapods implies that a cranio-vertebral joint of similar function existed in the ancestor of tetrapods, forming the precursor of the tetrapod atlas-axis complex.
The distinct nature of the basioccipital and exocippitals of tetrapods is the result of reduced ossification of the occiput, and no the incorporation of vertebral elements onto the back of the braincase relative to the rhipidistian condition. The similarity between the occiput and succeeding vertebrae of some primitive tetrapods is due to analogous ossification of notochordal tissue. Bony occipital condyles arose separately in many lineages of Paleozoic tetrapods. The atlas-axis complex of tetrapods is constrained by the pattern of occipital articulation. It is an excellent character for diagnosis of particular groups, but a poor character for determining relationships between separate lineages.
3

Lloret, Vilaspasa F. "Coordination of Hox identity between germ layers along the anterior-to-posterior axis of the vertebrate embryo." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/19726/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
During early embryonic development, a relatively undifferentiated mass of cells is shaped into a complex and morphologically differentiated embryo. This is achieved by a series of coordinated cell movements that end up in the formation of the three germ layers of most metazoans and the establishment of the body plan. Hox genes are among the main determinants in this process and they have a prominent role in granting identity to different regions of the embryo. The particular arrangement of their expression domains in early development corresponds to and characterises several future structures of the older embryo and adult animal. Getting to know the molecular and cellular phenomena underlying the correct Hox pattern will help us understand how the complexity of a fully-formed organism can arise from its raw materials, a relatively undifferentiated fertilised egg cell (zygote) and a large but apparently limited repertoire of molecular agents. In the present work I have concentrated on the specific factors, and their mechanism of action, that set up the Hox expression patterns in the gastrula and neurula embryo. I have put special emphasis on the initiation of Hox expression, which takes place first in the non-organiser mesoderm and subsequently in the neuroectoderm. I investigated the role of retinoid signalling and found that it is required during late gastrulation for activation of 3’ Hox genes in the neuroectoderm. Furthermore, I show evidence that the earliest phase of expression in the gastrula mesoderm requires Wnt, but not retinoid, activity. Moreover, the most 3’ Hox genes are direct targets of the Wnt pathway, whereas other Hox genes are indirectly regulated. Finally, I provide preliminary results that suggest a potential mechanism for communication between non-organiser mesoderm and neuroectoderm mediated by HOX protein intercellular signalling. This phenomenon would enable a direct coordination of Hox pattern between the two tissues.
4

Mastromina, Ioanna. "Investigation into the expression, role and regulation of the Myc oncogene during vertebrate embryonic body axis elongation." Thesis, University of Dundee, 2017. https://discovery.dundee.ac.uk/en/studentTheses/76216355-3572-4642-aaf8-72a9948af467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Habert, René. "Activité androgène du testicule chez le fœtus de rat in vivo et sa régulation." Paris 7, 1986. http://www.theses.fr/1986PA077086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recherche chez le fœtus de rat de l'existence et de l'origine des hormones gonadotropes circulantes et détermination du rôle de ces hormones dans le contrôle de la production testiculaire de testostérone. Mise au point d'un dosage biologique pour l'évaluation de l'activité gonadotrope totale circulante. Étude du rôle de l'hypophyse: évaluation des effets de la décapitation fœtale sur les différents niveaux de l'axe hypophyse. Testicule-tractus génital puis mesure de la réponse du testicule a la stimulation par des gonadotrophines exogenes. Etude de l'action en retour du testicule sur l'axe hypothalamo-hypophysaire. Étude de l'influence des facteurs extrahypophysaires (gonadotrophine placentaire-progestérone)
6

Corbani, MaIthé. "Régulation par les stéroïdes gonadiques du taux des RNA messagers codant pour les gonadotrophines hypophysaires chez le rat." Paris 6, 1986. http://www.theses.fr/1986PA066310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour évaluer l'influence des stéroïdes sur la synthèse de LH et FSH l'auteur mesure chez le rat le taux de RNAm en utilisant la traduction en milieu acellulaire et l'hybridation directe. Tous les stéroïdes testés in vivo exercent sur l'accumulation des RNAm un effet inhibiteur. Leur action s'exerce directement sur les cellules hypophysaires, selon un processus qui est fonction de la dose et du temps. Ceci pourrait expliquer les variations rythmiques des RNAm des gonadotrophines observées au cours du cycle oestrien chez la femelle. Ces résultats indiquent que chez le rat la synthèse des gonadotrophines est, comme leur sécrétion, soumise à une régulation par les stéroïdes gonadiques. Leur action s'exerce probablement au niveau transcriptionnel.
7

Bennani-Kabchi, Naïma. "Etude des variations saisonnieres de facteurs nutritionnels, hormonaux et metaboliques chez un rongeur desertique, le merion (meriones shawi)." Clermont-Ferrand 2, 1988. http://www.theses.fr/1988CLF2E407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schirar, Alain. "L'anoestrus de lactation chez la brebis Préalpes du sud : reprise de l'activité gonadotrope hypothalamo-hypophysaire et de l'activité ovarienne." Paris 6, 1986. http://www.theses.fr/1986PA066250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de l'étude a été de rechercher les mécanismes physiologiques de l'action inhibitrice de la lactation sur la reproduction en utilisant les brebis "Préalpes du sud" comme modèle expérimental que la durée de l'anoestrus postpartum dépend essentiellement des facteurs nerveux centraux qui contrôlent la sécrétion pulsatile de lh. L'allaitement retarde le rétablissement de cette sécrétion pulsatile par un mécanisme qui semble impliquer les opiaces endogènes déchargés au moment des tétées. Les faibles différences observées dans la durée de l'anoestrus postpartum et de lactation résultent en partie de l'influence modulatrice et régulatrice du complexe utéroovarien.
9

Collin, Françoise. "Contribution à l'étude de nouveaux neuropeptides dans le système nerveux central de la grenouille : caractérisation et localisation des mGnRH, cGnRH-II, urotensine II et séridine." Rouen, 1996. http://www.theses.fr/1996ROUES038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les neuropeptides jouent un rôle essentiel dans la communication cellulaire en tant que neurotransmetteurs, neuromodulateurs ou neurohormones. Nous avons mis en oeuvre un programme visant à caractériser de nouveaux neuropeptides dans le cerveau de la grenouille. Le présent travail a porté sur la caractérisation et la distribution de quatre nouveaux neuropeptides dans le système nerveux central (SNC) de la grenouille. Nous avons identifié pour la première fois deux formes de gonadolibérine (GnRH) dans le cerveau de la grenouille, la mammalian GnRH (mGnRH) et la chicken GnRH-II (cGnRH-II ) et montré que les deux peptides étaient distribués différemment dans le SNC de la grenouille. La mGnRH est localisée le long de l'axe hypothalamo-hypophysaire ou elle peut être colocalisée avec la cGnRH-II. De plus, la cGnRH-II est présente dans de nombreuses autres régions du SNC, notamment dans les motoneurones spinaux. Nous avons caracterisé un peptide apparenté à l'urotensine II (uII) dans le SNC de la grenouille. L'uII est localisée dans une population de neurones restreinte du bulbe et dans certains motoneurones spinaux. Nous avons également isolé un peptide totalement nouveau, la séridine, qui est essentiellement localisée dans les zones motrices du SNC et dans le muscle strié. L'ensemble de ces résultats suggère que la cGnRH-II, l'uII et la séridine sont impliquées dans la transmission d'informations motrices et que la mGnRH et la cGnRH-II jouent le rôle de neurohormones hypophysiotropes chez la grenouille.
10

Crumeyrolle, Michèle. "Etude experimentale sur le vieillissement de l'ovaire de la ratte." Paris 6, 1986. http://www.theses.fr/1986PA066458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Vertebral axis":

1

Korres, Demetrios S., ed. The Axis Vertebra. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Korres, Demetrios S. The Axis Vertebra. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Korres, Demetrios S. The Axis Vertebra. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Korres, Demetrios S. The Axis Vertebra. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Laureno, Robert. Lowly Origins. Edited by Robert Laureno. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190607166.003.0014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter, “Lowly Origins,” examines the evolution of the nervous system and its implications for clinical neurology. Topics include peripheral nerve anatomy, extraocular muscles, and physiologic circuits related to respiration. Human neuroanatomy and neurologic disease carry a record of our vertebrate ancestors, and neurology is more understandable when the clinician is attuned to our ancient neurological circuits. The extraocular muscles are a prime example. Although the extraocular muscles have changed their orientation to the axis of the eye, and although not all of these muscles are as important as they once were, these muscles of the human eye have otherwise changed little from those of the shark. They remain similar in appearance and consistent in innervation. They are the best conserved muscles in all of vertebrate evolution. The development of limbs, loss of gills, assumption of bipedal locomotion, and development of a huge brain has had virtually no effect on them.
6

Maruska, Karen P., and Russell D. Fernald. Social Regulation of Gene Expression in the African Cichlid Fish. Edited by Turhan Canli. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199753888.013.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
How does an animal’s social environment shape its behavior and physiology, and what underlying molecular and genetic mechanisms lead to phenotypic changes? To address this question, the authors used a model system that exhibits socially regulated plastic phenotypes, behavioral complexity, molecular level access, and genomic resources. The African cichlid fishAstatotilapia burtoni, in which male status and reproductive physiology are under social control, has become an important model for studying the mechanisms that regulate complex social behaviors. This chapter reviews what is known about how information from the social environment produces changes in behavior, physiology, and gene expression profiles in the brain and reproductive axis ofA. burtoni. Understanding the mechanisms responsible for translating perception of social cues into molecular change in a model vertebrate is important for identifying selective pressures and evolutionary mechanisms that shape the brain and ultimately result in diverse and complex social behaviors.

Частини книг з теми "Vertebral axis":

1

Korres, Demetrios S., and Nikolaos E. Efstathopoulos. "Fractures of the Vertebral Body." In The Axis Vertebra, 61–65. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Keravel, Yves, and Marc Sindou. "Surgical Occlusion of the Vertebrobasilar Axis (Vertebral Artery and Basilar Trunk)." In Giant Intracranial Aneurysms, 93–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83171-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Evangelopoulos, Dimitrios-Stergios. "Embryology." In The Axis Vertebra, 3–5. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karampinas, Panagiotis K., and Demetrios S. Korres. "Atlantoaxial Dislocation." In The Axis Vertebra, 79–85. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Angelini, Andrea, and Roberto Casadei. "Surgical Approaches." In The Axis Vertebra, 89–103. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Logroscino, Carlo, Luca Proietti, Giovanni Almadori, and Gaetano Paludetti. "Transmandible Approach." In The Axis Vertebra, 105–12. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lallos, Stergios N., and Nikolaos E. Efstathopoulos. "Infections." In The Axis Vertebra, 115–24. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Villas, Carlos. "Congenital Malformations." In The Axis Vertebra, 125–43. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mavrogenis, Andreas F., and Pietro Ruggieri. "Tumors." In The Axis Vertebra, 145–54. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Combalia, Andrés. "Anatomy." In The Axis Vertebra, 7–19. Milano: Springer Milan, 2013. http://dx.doi.org/10.1007/978-88-470-5232-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Vertebral axis":

1

Marques Filho, Gustavo de Souza, Ana Karoliny de Souza Gomes, João Pedro Maia Medeiros, Henrique Ribeiro Pessoa Cavalcanti, André Luiz Pinto Fabrício Ribeiro, Maria Francisca da Conceição Maciel Targino, Camilla Vanessa Araújo Soares, and André de Sá Braga Oliveira. "Morphometric Analysis of Axis Vertebra in Northeastern Brazil." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction: The axis is the second cervical vertebra and differs from the others by presenting particular anatomical landmarks. Morphological variations of the axis in different populations have clinical importance, since the lack of anatomical reference may compromise surgical procedures in this region. Objective: To analyze the morphometry of axis vertebra in northeastern Brazil. Methodology: Data collection was performed at the Federal University of Paraiba. Fifty-eight axis were used. Damaged or infantile vertebrae were excluded.Morphometric analysis was performed using a digital caliper and the data were statistically analyzed. Results were considered significant when p<0.05. Results: The width of the pars interarticulares was 9.25±1.68mm and the height was 7.37±1.87mm. The height of the dens of the axis in an anterior view was 16.29±1.82mm and the width was 9.41±0.86mm. The width of the articular face of the dens was 8.27±0.88mm. The anteroposterior length of the vertebral body was 15.29±2.02mm, the width was 16.79±1.68mm, and the height in anterior view was 19.96±2.48mm. The mean height of the vertebral lamina was 10.89±1.64mm and the anteroposterior length was 20.33±2.13mm. Significant difference was observed between right and left sides of anteroposterior length (p=0.012). Conclusion: Axis morphometry was shown for the first time in a specific population from northeastern Brazil. Morphological differences were observed in the present study and differ from others in the literature. These data may serve as guidance for professionals who will perform any procedures in this region, highlighting the importance of anatomical knowledge and its variations.
2

DiAngelo, Denis J., Keith Vossel, and Kevin T. Foley. "Kinematics of the Cervical Spine: Path of the Instant Axis of Rotation in Flexion and Extension." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Previous Biomechanical Measures of Vertebral Kinematics. White and Panjabi (1990) have suggested that the Instant Axis of Rotation (IAR) be used to describe the 2-D motion of a vertebral body. However, the location of the IAR for the cervical spine varies amongst spine researchers. White and Panjabi (1990) have suggested the IAR of each vertebra is located in the anterior region of the subjacent vertebra; Porterfield and Derosa (1995) suggest it is located in the mid-region of the subjacent vertebra; and Mameren et al. (1992) found it to lay in the central region of the vertebral body being tracked. Goel and Winterbottom (1991) stated that during flexion and extension, the axis of rotation is located somewhere within the vertebral body itself. Unfortunately, no accurate calculations of the IAR paths of the cervical spine exist; typical vertebral measurements only include the rotational components. Estimation of the vertebrae’s IAR location in vitro depends on the experimental set-up (motion and loading mechanics), anatomical structure, mathematical reduction technique, and accuracy of the measurement equipment. Crisco et al. (1994) determined the theoretical error in calculating the location of the IAR as a function of the measurement system specifications and the placement of the markers on the spinal body. Conventional tracking systems having translational resolutions of 0.1mm to 0.05mm were found to calculate the location of the IAR to within 7mm to 10mm, respectively. This error became significantly larger as the resolution of the measurement system dropped off. Most investigators only calculate the rotational components of a body’s motion and seldom calculate the error involved in their mathematical analysis. Furthermore, overall head movement is often reported (i.e., C0 to T1), but smaller flexion-extension movements of individual spinal bodies are either void in the literature or suspect to large theoretical errors. The objective of the study was to determine the IAR of the sub-axial cervical vertebral bodies under physiological flexion and extension conditions in vitro.
3

Faruk Senan, Nur Adila, and Oliver M. O’Reilly. "On the Use of Quaternions to Characterize the Dynamics of a Vertebral Motion Segment." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The characterization of the kinematics and kinetics of anatomical joints is a central problem in biomechanics. Traditionally, the kinematics of the joint has been characterized using the helical axis of motion (HAM) and Euler angles. The estimation of these quantities from optical measurements of landmarks placed on the anatomical parts constituting the joint is difficult and often fraught with error.
4

Yoganandan, Narayan, Brian D. Stemper, Frank A. Pintar, Glenn Paskoff, and Barry Shender. "Three-Dimensional Segmental Coupling Responses of the Cervical Spine." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of the present study is to determine to the three-dimensional segment-specific coupling factors from healthy, normal, non-degenerated human cervical spinal columns under bending. Using pure moment loading protocols, cadaver subaxial columns were fixed at the two ends, off-axis forces and moments were recorded using a distal six-axis load cell, and primary and secondary rotations were obtained as a function of applied moments, up to 2.0 Nm. Segmental bone mineral densities were determined using quantitated computed tomography (QCT). Coupling factors were the smallest at the cervico-thoracic spinal segment. Cranial and caudal decreases of the coupling factors occurred from the mid-cervical segment at all applied moment levels, from 65 to 72% at the C4-C5 segment and 59 to 75% at the C5-C6 segment. On average, 55% of the primary rotation was coupled with the secondary rotation across the entire column. Peak coupling occurring in these segments may indicate a greater propensity for age-related changes to these vertebral levels, and offer support to the commonly observed lower cervical degeneration in clinical studies.
5

Thorbole, Chandrashekhar K., M. Jorgensen, and H. M. Lankarani. "Assessment of the Dynamic Response of a Lumbar Spine Functional Unit Under Axial Compressive High Loading Rate: Outcome on the Axial Disc Bulge and its Relation to the Load Magnitude." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Human lumbar spine tolerance to the compressive impact loading is less when compared to its tolerance to the perpendicular dynamic load. The dynamic response of the functional spinal unit in compressive loading is governed by the viscoelastic behavior of the IVD (Intervertebral disc). The axial bulge of the disc is the result of viscoelastic nature of the nucleus which tends to swell under high loading rate. This characteristic causes the end-plate to bow into the cancellous bone as it is supported by the strong cortical bone on its periphery. The end-plate is one of the important elements in the functional spinal unit if failed results disc material to progress into the vertebral body beneath it. This paper quantifies the axial bulge of the end-plate under dynamic compressive load using Finite Element Method. A simple validated axis symmetry FE model is employed to identify the most vulnerable lumbar spine level using the sensitivity analysis. This is followed by the development of more detailed FE model with viscoelastic modeling of the nucleus and the annulus. The dynamic load is applied on the superior vertebral body which follows triangular loading profile with 50ms rise time. The axial bulge is quantified at the center of the disc as this is the location of maximum deflection and local stress in the end-plate. The ratio of axial bulge and the total FSU deflection is plotted against magnitude of load applied to gain insight regarding the relation between load magnitude and axial bulge. This study will complement the research on end-plate fracture mechanism and its role in causing the burst fracture based on the magnitude of load.
6

Yap, Kai Lee, Stephanie I. Fraley, Polina Sysa Shah, Fengying Wang, Michelle M. Thiaville, Natini Jinawath, Kentaro Nakayama, et al. "Abstract LB-115: NAC1 is an actin binding protein essential for the cytokinesis of cancer cells and plays a role in the patterning of murine vertebral axis." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meghdari, Ali, and Amir H. Bahrami. "Mathematical Modeling of Normal, Degenerated, and Fused Cervical Spines Using IAR’S Concept." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract During flexion/extension, of the head-neck system, cervical spine undergoes a stepwise motion from the upper to lower regions with a specific time lag. Motion of each vertebrae is composed of a translation and a rotation with respect to lower vertebrae, which may be considered as an absolute rotation about an axis called Instantaneous Axis of Rotation (IAR). Location of this axis is different between normal, and degenerated spines. In this research intersegmental force-moments are evaluated and compared in normal, degenerated, and fused subjects employing a biomechanical model of head-neck system based on IAR’s concept and the results are presented.
8

Paiva, Gavin, Trent Guess, and Mohammad Kia. "Generating Parameters of a Multi-Body Meniscus Model From Experimental Data." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The meniscus is a crucial anatomical structure in the mechanics of vertebrate hind legs [3]. Menisci function primarily by distributing the tibio-femoral contact forces, and thereby reducing the stress in the articular cartilage of the knee joint. As the meniscus is a flexible body that undergoes large strains, it is typically ignored in rigid-body biomechanical simulations. One documented method of including this factor in the multi-body framework is to represent the menisci as discrete bodies connected by linear 6-axis spring and damper elements [2]. The difficulty arises in determining the stiffnesses and viscosities that correspond to the material properties of the real meniscus. Material properties have previously been determined by a design of experiments approach to match the force displacement behavior of a multi-body model to a linear finite element model. This study explores a method of determining the said properties from experimental data collected in a semi-physiological loading, where the force orientation is principally circumferential tension and compression in the other directions.
9

Bosch Reig, Ignacio, Luis Bosch Roig, Valeria Marcenac, and Nuria Salvador Luján. "Linear parks understood as vertebration instruments of the city." In 24th ISUF 2017 - City and Territory in the Globalization Age. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/isuf2017.2017.6136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research raises as thesis the idea that Linear Park is an urban instrument capable of vertebrate the city and, consequently, of regenerate it. To this end, ten parks strategically located in big cities such as Rio de Janeiro, London, Paris, Madrid, Barcelona, ​​or in medium or small cities such as Valencia, Castellón or Figueres, have been analyzed. Of this analysis we have deduced some characteristics that are considered key in the linear and transversal vertebration of the city, such as: - Green axis-corridor approach - Sequence of events with integration of public buildings - Continuity derived from the union of different areas - Promotion of active leisure activities, individual or collective: sports, cultural, .... - Capability of relation and regeneration of ecosystems: forest, meadow, orchard, nurseries, water, city, .... - Capability to restore environment, with reduction in CO2, in noise pollution, ... - Establish relations between the city and the territory with definition of natural parks - Contribute to prevent thermal inversion in the city - Establish a beginning and an end as recognizable elements in city. - Confrontation of opposites: static or dynamic; soft (green) or hard (pavement); unitary or fragmentary, cartesian or organic, ... The parks thus understood can be organized in diverse typologies, such us: classic order; in net; upholstery-continuos map; linear order with grooves, tapes or bands; landscaper and naturalist; ... .. The work delves into these themes by recognizing tools of interest such as: harmonic relationship; human scale; non-guided tours; sensory experimentation: spaces, sights, aromas, sounds, colorful, ...; unexpected and random; pragmatic and passionate; order within disorder; activation of spaces without hierarchies or apriorisms; flee from monotony; evocations; ... KEY WORDS: linear park, green corridor, city vertebrador, urban regeneration, sensorial experimentation, harmonious relationship, ... REFERENCES: Referred to the following urban parks: Paseo de Copacabana, 1979 Burle Max; La Vilette project 1975, León Krier; La Vilette 1981-87, Bernard Tschumi; Turia Park, 1981, Ricardo Bofill; Botanic Garden, Barcelona, ​​2002, Carlos Ferrater; Thames Barrier Park, London, 2000, Signes Group; Garden of the senses, Castellón, Del Rey-Magro; Park of the Manzanares, Madrid, Burgos-Garrido; Les Aigües Park, Figueres, Oliac-Batle; Parque Cabecera, Valencia, De Miguel-Corell-Muñoz
10

Tokumaru, Kumon. "The Three Stage Digital Evolution of Linguistic Humans." In GLOCAL Conference on Asian Linguistic Anthropology 2019. The GLOCAL Unit, SOAS University of London, 2019. http://dx.doi.org/10.47298/cala2019.12-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Digital Linguistics (DL) is an interdisciplinary study that identifies human language as a digital evolution of mammal analog vocal sign communications, founded on the vertebrate spinal sign reflex mechanism [Tokumaru 2017 a/b, 2018 a/b/c/d]. Analog signs are unique with their physical sound waveforms but limited in number, whilst human digital word signs are infinite by permutation of their logical property, phonemes. The first digital evolution took place 66,000 years ago with South African Neolithic industries, Howiesons Poort, when linguistic humans acquired a hypertrophied mandibular bone to house a descended larynx for vowel accented syllables containing logical properties of phonemes and morae. Morae made each syllable distinctive in the time axis and enabled grammatical modulation by alternately transmitting conceptual and grammatical syllables. The sign reflex mechanism is an unconscious self-protection and life-support mechanism, operated by immune cell networks inside the ventricle system. DL identified cellular and molecular structures for the sign (=concept) device as a B lymphocyte (or, in other words, Mobile Ad-Hoc Networking Neuron), connects to sensory, conceptual and networking memories, which consist of its meanings [Table 1]. Its antibodies can network with antigens of CSF-Contacting Neurons at the brainstem reticular formation and of Microglia cells at the neocortex [Figure 1]. It is plausible that the 3D structure of the antigen molecule takes the shape of word sound waveform multiplexing intensity and pitch, and that specifically pairing the antibody molecule consists of three CDRs (Complementality Defining Regions) in the Antibody Variable Region network with the logic of dichotomy and dualism. As sign reflex deals with survival issues such as food, safety and reproduction, it is stubborn, passive and inflexible: It does not spontaneously look for something new, and it is not designed to revise itself. These characteristics are not desirable for the development of human intelligence, and thus are to be overcome. All the word, sensory and network memories in the brain must be acquired postnatally through individual learning and thought. The reason and intelligence of humans depend on how correctly and efficiently humans learn new words and acquire appropriate meanings for them.

До бібліографії