Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D culture model“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D culture model" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D culture model"
Liu, Qingxi, Zijiang Zhang, Yupeng Liu, Zhanfeng Cui, Tongcun Zhang, Zhaohui Li und Wenjian Ma. „Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model“. Journal of Applied Biomaterials & Functional Materials 16, Nr. 3 (02.04.2018): 144–50. http://dx.doi.org/10.1177/2280800018764763.
Der volle Inhalt der QuelleChae, Dong-Sik, Sang Joon An, Seongho Han und Sung-Whan Kim. „Synergistic Therapeutic Potential of Dual 3D Mesenchymal Stem Cell Therapy in an Ischemic Hind Limb Mouse Model“. International Journal of Molecular Sciences 24, Nr. 19 (27.09.2023): 14620. http://dx.doi.org/10.3390/ijms241914620.
Der volle Inhalt der QuelleSilva, Emmanuel João Nogueira Leal, Nancy Kudsi de Carvalho, Carina Taboada Ronconi, Gustavo De-Deus, Mario Luis Zuolo und Alexandre Augusto Zaia. „Cytotoxicity Profile of Endodontic Sealers Provided by 3D Cell Culture Experimental Model“. Brazilian Dental Journal 27, Nr. 6 (Dezember 2016): 652–56. http://dx.doi.org/10.1590/0103-6440201600792.
Der volle Inhalt der QuelleKreß, Sebastian, Roland Schaller-Ammann, Jürgen Feiel, Joachim Wegener, Joachim Priedl, Wolf Dietrich, Cornelia Kasper und Dominik Egger. „Innovative Platform for the Advanced Online Monitoring of Three-Dimensional Cells and Tissue Cultures“. Cells 11, Nr. 3 (25.01.2022): 412. http://dx.doi.org/10.3390/cells11030412.
Der volle Inhalt der QuelleRosendahl, Jennifer, Andreas Svanström, Mattias Berglin, Sarunas Petronis, Yalda Bogestål, Patrik Stenlund, Simon Standoft et al. „3D Printed Nanocellulose Scaffolds as a Cancer Cell Culture Model System“. Bioengineering 8, Nr. 7 (10.07.2021): 97. http://dx.doi.org/10.3390/bioengineering8070097.
Der volle Inhalt der QuelleBauer, Magdalena, Magdalena Metzger, Marvin Corea, Barbara Schädl, Johannes Grillari und Peter Dungel. „Novel 3D-Printed Cell Culture Inserts for Air–Liquid Interface Cell Culture“. Life 12, Nr. 8 (10.08.2022): 1216. http://dx.doi.org/10.3390/life12081216.
Der volle Inhalt der QuelleTakahashi, Yuki, Yumi Nomura, Yuma Yokokawa, Shiro Kitano, Satoshi Nagayama, Eiji Shinozaki, Ryohei Katayama und Naoya Fujita. „Abstract 4565: Drug screening by layered 3D co-cultured tumor model including vascularized stromal tissue“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4565. http://dx.doi.org/10.1158/1538-7445.am2023-4565.
Der volle Inhalt der QuelleScalise, Mariangela, Fabiola Marino, Luca Salerno, Nunzia Amato, Claudia Quercia, Chiara Siracusa, Andrea Filardo et al. „Adult Multipotent Cardiac Progenitor-Derived Spheroids: A Reproducible Model of In Vitro Cardiomyocyte Commitment and Specification“. Cells 12, Nr. 13 (05.07.2023): 1793. http://dx.doi.org/10.3390/cells12131793.
Der volle Inhalt der QuelleMetelmann, Isabella B., Sebastian Kraemer, Matthias Steinert, Stefan Langer, Peggy Stock und Olga Kurow. „Novel 3D organotypic co-culture model of pleura“. PLOS ONE 17, Nr. 12 (01.12.2022): e0276978. http://dx.doi.org/10.1371/journal.pone.0276978.
Der volle Inhalt der QuelleProsser, Amy, Colin Scotchford, George Roberts, David Grant und Virginie Sottile. „Integrated Multi-Assay Culture Model for Stem Cell Chondrogenic Differentiation“. International Journal of Molecular Sciences 20, Nr. 4 (22.02.2019): 951. http://dx.doi.org/10.3390/ijms20040951.
Der volle Inhalt der QuelleDissertationen zum Thema "3D culture model"
Zhao, Huizhi. „3D Cell Culture Model Synthesized By Polycaprolactone Nanofiber Electrospinning“. Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1531319675295094.
Der volle Inhalt der QuellePeddagangannagari, Sreekanth Reddy. „An in vitro human 3D co-culture model to study endothelial-astrocyte interactions“. Thesis, Open University, 2012. http://oro.open.ac.uk/54831/.
Der volle Inhalt der QuelleSmith, Jenny Thompson. „A 3D culture model to investigate cellular responses to mechanical loading in spinal cord injury“. Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/16199/.
Der volle Inhalt der QuelleManzan, Martins Camilla. „EFFECT OF ENDOCRINE DISRUPTORS ON HUMAN ENDOMETRIAL STROMAL CELLS AND THEIR INTERACTION WITH TROPHOBLAST“. Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1183943.
Der volle Inhalt der QuelleSieh, Shirly. „Development of a 3D culture system to study the skeletal metastasis of prostate cancer“. Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/50870/1/Shirly_Sieh_Thesis.pdf.
Der volle Inhalt der QuelleVazquez, Marisol. „Development of a novel in vitro 3D osteocyte-osteoblast co-culture model to investigate mechanically-induced signalling“. Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/56764/.
Der volle Inhalt der QuelleSmolina, Margarita. „Breast cancer cell lines grown in a three-dimensional culture model: a step towards tissue-like phenotypes as assessed by FTIR imaging“. Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/267686.
Der volle Inhalt der QuelleLe cancer du sein est une maladie très hétérogène, tant au niveau clinique que biologique. Cette hétérogénéité rend impossible la caractérisation moléculaire complète des cellules cancéreuses individuelles dans la pratique clinique courante. Dans ce contexte, l’imagerie infrarouge à transformée de Fourier (FTIR) des coupes tissulaires permet d'obtenir pour chaque pixel d'une image de tissu des centaines de marqueurs potentiels indépendants, ce qui pourrait faire de cette technique un outil particulièrement puissant pour identifier des différents types et sous-types cellulaires. L'interprétation des spectres infrarouges (IR) enregistrés à partir des coupes histologiques nécessite cependant une calibration qui fait actuellement défaut. Cette calibration pourrait être obtenue à partir de lignées cellulaires tumorales bien caractérisées. Traditionnellement, les cellules épithéliales mammaires sont étudiées in vitro sous forme de monocouches adhérentes bidimensionnelles (2D), ce qui conduit à l'altération de la communication entre les cellules et leur environnement et, par conséquent, à la perte de l’architecture et de la fonction du tissu épithélial. Un certain nombre d'interactions physiologiques clés peuvent être rétablies en utilisant des systèmes de culture tridimensionnelle (3D) dans une matrice extracellulaire riche en laminine (lrECM). L'objectif de cette thèse consiste à étudier par imagerie FTIR l'influence du microenvironnement (via une comparaison entre les cultures 2D et 3D lrECM ou les cultures 3D lrECM en présence ou en l’absence de fibroblastes) sur une série de treize lignées de cellules tumorales mammaires humaines bien caractérisées et à déterminer les conditions de culture générant des phénotypes spectraux qui se rapprochent le plus de ceux observés dans les tissus tumoraux. Au cours de ce travail, nous avons mis au point la culture des lignées cellulaires dans un modèle 3D lrECM ainsi qu’une méthodologie de préparation des échantillons offrant la possibilité de les comparer de manière pertinente avec les cellules cancéreuses présentes dans les coupes histologiques. De même, nous avons étudié par imagerie FTIR les effets du microenvironnement sur les lignées de cellules tumorales et inversement. Pour les lignées investiguées, le passage d’une culture 2D à une culture 3D lrECM s’accompagne, en effet, de modifications du spectre IR étroitement corrélées aux modifications du transcriptome. Les marqueurs spectraux indiquent également que l’environnement 3D génère un phénotype cellulaire proche de celui trouvé dans les coupes histologiques. De manière intéressante, cette proximité est d’autant plus renforcée en présence de fibroblastes dans le milieu de culture.
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Sorrentino, Rita. „Three dimensional oral mucosa models: development and applications“. Doctoral thesis, Università del Piemonte Orientale, 2020. http://hdl.handle.net/11579/114910.
Der volle Inhalt der QuelleCho, Hyung Joon. „Pro-oxidative and Pro-inflammatory Mechanisms of Brain Injury in Experimental Animal and 3D Cell Culture Model Systems“. Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/73476.
Der volle Inhalt der QuellePh. D.
Lee, Si Yuen. „Culture of human pluripotent stem cells and neural networks in 3D using an optogenetic approach and a hydrogel model“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:5cecda23-6208-4c0f-a800-d5ddccae24d3.
Der volle Inhalt der QuelleBücher zum Thema "3D culture model"
Dipasquale, Letizia, Saverio Mecca und Mariana Correia, Hrsg. From Vernacular to World Heritage. Florence: Firenze University Press, 2020. http://dx.doi.org/10.36253/978-88-5518-293-5.
Der volle Inhalt der QuelleBalcıoğlu, Tevfik. On Design. Bloomsbury Publishing Plc, 2024. http://dx.doi.org/10.5040/9781350359345.
Der volle Inhalt der QuelleBuchteile zum Thema "3D culture model"
Miller, Daniel H., Ethan S. Sokol und Piyush B. Gupta. „3D Primary Culture Model to Study Human Mammary Development“. In Methods in Molecular Biology, 139–47. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_10.
Der volle Inhalt der QuelleChioni, Athina-Myrto, Rabia Tayba Bajwa und Richard Grose. „3D Organotypic Culture Model to Study Components of ERK Signaling“. In Methods in Molecular Biology, 255–67. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6424-6_19.
Der volle Inhalt der QuelleShay, Chloe, und Yong Teng. „Evaluating the Activity of Using a Novel 3D Culture Model“. In Methods in Molecular Biology, 159–64. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1558-4_9.
Der volle Inhalt der QuelleFlint, Lucy. „Multimodal Mass Spectrometry Imaging of an Aggregated 3D Cell Culture Model“. In Methods in Molecular Biology, 147–59. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3319-9_13.
Der volle Inhalt der QuelleYan, Yuanwei, und Su-Chun Zhang. „Generation of Cerebral Cortical Neurons from Human Pluripotent Stem Cells in 3D Culture“. In Stem Cell-Based Neural Model Systems for Brain Disorders, 1–11. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3287-1_1.
Der volle Inhalt der QuelleAugustine, Tanya N. „Analysis of Immune-Tumor Cell Interactions Using a 3D Co-culture Model“. In Methods in Molecular Biology, 103–10. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0802-9_8.
Der volle Inhalt der QuellePendić, Jugoslav, und Barry Molloy. „The Use of 3D Documentation for Investigating Archaeological Artefacts“. In The 3 Dimensions of Digitalised Archaeology, 9–26. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-53032-6_2.
Der volle Inhalt der QuelleSpoerri, Loredana, Kimberley A. Beaumont, Andrea Anfosso und Nikolas K. Haass. „Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma“. In Methods in Molecular Biology, 401–16. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7021-6_29.
Der volle Inhalt der QuelleFu, Xiangyu, Gengkang Lian und Jing Zhao. „Exploring the Blending of Ancient and Modern Chinese Culture through a 3D Model“. In Proceedings of the 2023 International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2023), 485–97. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-370-2_50.
Der volle Inhalt der QuelleBlazquez, Raquel, Daniela Sparrer, Jessica Sonbol, Jürgen Philipp, Florian Schmieder und Tobias Pukrop. „Organotypic 3D Ex Vivo Co-culture Model of the Macro-metastasis/Organ Parenchyma Interface“. In Methods in Molecular Biology, 165–76. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3674-9_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D culture model"
Rodkhwan, Supasasi, und Pizzanu Kanongchaiyos. „Shape Retrieval for Khon 3D Model“. In 2013 International Conference on Culture and Computing (Culture Computing). IEEE, 2013. http://dx.doi.org/10.1109/culturecomputing.2013.20.
Der volle Inhalt der QuelleShemeneva, Anastasia Valerievna. „Legal culture as a model of social governance“. In 3d International Scientific and Practical Conference. TSNS Interaktiv Plus, 2017. http://dx.doi.org/10.21661/r-115802.
Der volle Inhalt der QuelleChaluvally-Raghavan, P., A. Zeisel, W. Koestler, J. Jacob-Hirsch, G. Rechavi, E. Domany und Y. Yarden. „HER2-Associated Breast Cancer Signature Using a 3D Culture Model.“ In Abstracts: Thirty-Second Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 10‐13, 2009; San Antonio, TX. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-09-4146.
Der volle Inhalt der QuellePatel, Kalpana, Belinda O'Clair, Tim O'Callaghan, Daniel M. Appledorn und Derek Trezise. „Abstract 4295: A 3D culture model for screening of cancer therapeutics“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4295.
Der volle Inhalt der QuelleMarshall, Lauren, Isabel Löwstedt, Paul Gatenholm und Joel Berry. „Prevascularized, Co-Culture Model for Breast Cancer Drug Development“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80409.
Der volle Inhalt der QuelleCheluvaraju, Chaitra, Stephen Shuford, Christina Mattingly, Teresa DesRochers, Matthew Gevaert, David E. Orr und Hal E. Crosswell. „Abstract 3935: A perfused 3D co-culture model of vemurafenib-resistant melanoma“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3935.
Der volle Inhalt der QuelleMedearis, S., R. Brown, K. Pollard, A. Bosak, C. Dugas, A. Das, R. Sato, V. Traina-Dorge, M. Moore und G. Piedimonte. „3D Culture Model to Characterize RSV Infection in the Peripheral Nervous System“. In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a3126.
Der volle Inhalt der QuelleSun, Jinfeng. „The construction of 3D model of safty culture system in CNPC's oil factories“. In 2011 International Conference on E-Business and E-Government (ICEE). IEEE, 2011. http://dx.doi.org/10.1109/icebeg.2011.5885320.
Der volle Inhalt der QuelleIrigoyen, Macarena, und Gonzalo Castillo. „Abstract 5195: Efficacy of histone deacetylase inhibitors in a 3D cell culture model“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5195.
Der volle Inhalt der QuelleIrigoyen, Macarena, und Gonzalo Castillo. „Abstract 5195: Efficacy of histone deacetylase inhibitors in a 3D cell culture model“. In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5195.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "3D culture model"
Malik, Abir, D. Lam, H. A. Enright, S. K. G. Peters, B. Petkus und N. O. Fischer. Characterizing the Phenotypes of Brain Cells in a 3D Hydrogel Cell Culture Model. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1466140.
Der volle Inhalt der QuellePalamar, Svitlana P., Ganna V. Bielienka, Tatyana O. Ponomarenko, Liudmyla V. Kozak, Liudmyla L. Nezhyva und Andrei V. Voznyak. Formation of readiness of future teachers to use augmented reality in the educational process of preschool and primary education. CEUR Workshop Proceedings, Juli 2021. http://dx.doi.org/10.31812/123456789/4636.
Der volle Inhalt der QuelleYue, Xiaoshan, und Amanda B. Hummon. Proteomic Analysis to Identify Functional Molecules in Drug Resistance Caused by E-Cadherin Knockdown in 3D-Cultured Colorectal Cancer Models. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada599355.
Der volle Inhalt der QuelleHeitman, Joshua L., Alon Ben-Gal, Thomas J. Sauer, Nurit Agam und John Havlin. Separating Components of Evapotranspiration to Improve Efficiency in Vineyard Water Management. United States Department of Agriculture, März 2014. http://dx.doi.org/10.32747/2014.7594386.bard.
Der volle Inhalt der Quelle