Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „3D structuring“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "3D structuring" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "3D structuring"
Senn, T., Ch Waberski, J. Wolf, J. P. Esquivel, N. Sabaté und B. Löchel. „3D structuring of polymer parts using thermoforming processes“. Microelectronic Engineering 88, Nr. 1 (Januar 2011): 11–16. http://dx.doi.org/10.1016/j.mee.2010.08.003.
Der volle Inhalt der QuellePurwidyantri, Agnes, Chih-Hsien Hsu, Chia-Ming Yang, Briliant Adhi Prabowo, Ya-Chung Tian und Chao-Sung Lai. „Plasmonic nanomaterial structuring for SERS enhancement“. RSC Advances 9, Nr. 9 (2019): 4982–92. http://dx.doi.org/10.1039/c8ra10656h.
Der volle Inhalt der QuelleAleksandrov, M., A. Diakité, J. Yan, W. Li und S. Zlatanova. „SYSTEMS ARCHITECTURE FOR MANAGEMENT OF BIM, 3D GIS AND SENSORS DATA“. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W9 (30.09.2019): 3–10. http://dx.doi.org/10.5194/isprs-annals-iv-4-w9-3-2019.
Der volle Inhalt der QuelleQi, Jianbo, Tiangang Yin, Donghui Xie und Jean-Philippe Gastellu-Etchegorry. „Hybrid Scene Structuring for Accelerating 3D Radiative Transfer Simulations“. Remote Sensing 11, Nr. 22 (12.11.2019): 2637. http://dx.doi.org/10.3390/rs11222637.
Der volle Inhalt der QuelleKim, Do-Yeon. „Liver vasculature refinement with multiple 3D structuring element shapes“. Pattern Analysis and Applications 17, Nr. 3 (24.04.2013): 667–78. http://dx.doi.org/10.1007/s10044-013-0338-6.
Der volle Inhalt der QuelleYan, Hengfeng, Jimin Chen und Jinyan Zhao. „3D-MID manufacturing via laser direct structuring with nanosecond laser pulses“. Journal of Polymer Engineering 36, Nr. 9 (01.11.2016): 957–62. http://dx.doi.org/10.1515/polyeng-2015-0367.
Der volle Inhalt der QuelleJabłoński, Mirosław. „Silhouette Processing Via Mathematical Morphology with Pose-Aware Structuring Elements Based on 3D Model“. Image Processing & Communications 17, Nr. 4 (01.12.2012): 71–78. http://dx.doi.org/10.2478/v10248-012-0031-1.
Der volle Inhalt der QuelleJaksa, Laszlo, Dieter Pahr, Gernot Kronreif und Andrea Lorenz. „Development of a Multi-Material 3D Printer for Functional Anatomic Models“. International Journal of Bioprinting 7, Nr. 4 (12.10.2021): 420. http://dx.doi.org/10.18063/ijb.v7i4.420.
Der volle Inhalt der QuelleIvanov, Alexey, und Ulrich Mescheder. „Silicon Electrochemical Etching for 3D Microforms with High Quality Surfaces“. Advanced Materials Research 325 (August 2011): 666–71. http://dx.doi.org/10.4028/www.scientific.net/amr.325.666.
Der volle Inhalt der QuelleBéjot, Pierre, und Bertrand Kibler. „Quadrics for Structuring Invariant Space-Time Wave Packets“. EPJ Web of Conferences 266 (2022): 13018. http://dx.doi.org/10.1051/epjconf/202226613018.
Der volle Inhalt der QuelleDissertationen zum Thema "3D structuring"
Friedrich, Aline [Verfasser]. „3D manufacturing using laser direct structuring and the application on the development of antenna systems / Aline Friedrich“. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2019. http://d-nb.info/1192440536/34.
Der volle Inhalt der QuelleBaldacci, Fabien. „Graphe de surface orientée : un modèle opérationnel de segmentation d'image 3D“. Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13940/document.
Der volle Inhalt der QuelleIn this work we focus on 3D image segmentation. The aim consists in defining a framework which, given a segmentation problem, allows to design efficiently an algorithm solving this problem. Since this framework has to be unspecific according to the kind of segmentation problem, it has to allow an efficient implementation of most segmentation techniques and criteria, in order to combine them to define new algorithms. This framework has to rely on a structuring model both representing the topology and the geometry of the partition of an image, in order to efficiently extract required information. In this document, different segmentation techniques are presented in order to define a set of primitives required for their implementation. Existing models are presented with their advantages and drawbacks, then the new structuring model is defined. Its whole implementation including details of its memory consumption and time complexity for each primitives of the previously defined set of requirements is given. Some examples of use with real image analysis problems are described, with also possible extensions of the model and its implementation on parallel architecture
Nouri, Lamia. „Développement d'un procédé de structuration 3D pour le silicium“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT088/document.
Der volle Inhalt der QuelleThis thesis deals with the development of a patterning process for silicon substrates. Based on ion implantation through a resist pattern to locally modified the underneath layer. Wet etching processes have been developed to reveal the shapes transferred into the silicon substrate. Thanks to morphological, physical and chemical characterizations, modifications induced by ion implantation have been identified and understood.Two ion species (argon and hydrogen) were used in this thesis in order to assess either physical or chemical modifications in silicon substrate. Several wet chemistries: alkaline, acid and dissolution by anodization, were investigated to reveal the final shape. The optimization of the implantation and wet etching processes allowed to obtain 2D and 3D structures with silicon substrate.Moreover, our approach has been successfully implemented to pattern 2D shapes in SiOCH and silicon nitride
Kamotesov, Sergkei. „Transmission d’énergie par induction électromagnétique en plastronique 3D“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1353.
Der volle Inhalt der QuelleThe objective of this thesis is to evaluate the interest of 3D molded interconnect devices technologies 3D-MID for wireless power transfer (WPT) through electromagnetic induction. WPT systems mostly uses planar coils that allows transfer between receiver and emitter at low and mid-range distance, at the condition that they are well aligned. We studied a specific case with a 3D receiver enclosed in a half meter box with 4 emitting inductors on 4 sides. Three questions were examined: the magnetic resonance of 3D-MID inductors at 6.78 MHz, their dimensions and their 3D shape. The nearly spherical shape 3D-MID receiver (Ø 8 cm) was 3D printed, activated with laser direct structuring (LDS), autocatalytic metallization and electroplating. It has 3 solenoid receiving inductors, each with quality factor above 129 ±10, placed orthogonally on the equators. The experimental results show: (1) the receiver is able to receive 4.33 W at 15.8 % efficiency in the middle of the box and (2) that we can change position and orientation of the receiver in the box, the placement of the inductors allows, in a widely meaning, to mean the received power. In conclusion 3D-MID allows to integrate, relatively easily, inductors for WPT, in the casing of electronics devices, in the same way as for 3D-MID electromagnetic antennas in smartphones. These inductors can 3D-shape the casing, which will allow the design of omnidirectional receivers
Killge, Sebastian, Sujay Charania, Sebastian Lüngen, Niels Neumann, Zaid Al-Husseini, Dirk Plettemeier, Johann W. Bartha, Krzysztof Nieweglowski und Karlheinz Bock. „Micro structured coupling elements for 3D silicon optical interposer“. SPIE, 2017. https://tud.qucosa.de/id/qucosa%3A35147.
Der volle Inhalt der QuelleMerheb, Melissa. „Une approche universelle d'assemblage dirigé de nanoparticules dans des microstructures polymères 1D, 2D et 3D“. Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0013.
Der volle Inhalt der QuelleThe controlled assembly of nanoparticles (NPs) on 3D micropatterns and over a large surface is a promising method for the creation of structured materials with new properties. In this context, the combination of lithography with colloidal deposition has attracted much attention during the last decade due to the advantages offered by both approaches. In this thesis, we have developed a versatile method allowing the control of the assembly of NPs whatever their nature, size and shape. This approach is based on the functionalization of a photopolymer in order to give it positive charges allowing it, after two photon photopolymerization (2PP) step, to attract negatively charged NPs, due to electrostatic interactions. Studying the reactivity of the photopolymer and both optical and structural properties of the assemblies enabled us to optimize the photochemical stability in 2PP, improve the reproducibility of the process, extend the functionalization technique to a large number of amines and acrylic monomers and provide a better understanding of the functionalization mechanism. At the same time, we have proposed a new functionalization approach that consists of treating the polymerized surface with amines. The advantage of this approach is the possibility of obtaining an assembly of NPs on large surfaces produced by photopolymerization at 1 or 2 photons which overcomes the constraints associated with the prior functionalization of the monomer
Martinet, Aurélien. „Structuring 3D Geometry based on Symmetry and Instancing Information“. Phd thesis, 2007. http://tel.archives-ouvertes.fr/tel-00379200.
Der volle Inhalt der QuelleBücher zum Thema "3D structuring"
Sharma, Sarah, und Rianka Singh, Hrsg. Re-Understanding Media. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478022497.
Der volle Inhalt der QuelleBuchteile zum Thema "3D structuring"
Lucas, Laurent, Céline Loscos und Yannick Remion. „3D Scene Reconstruction and Structuring“. In 3D Video, 157–72. Hoboken, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118761915.ch8.
Der volle Inhalt der QuelleSchramm, R. „Structuring and Metallization“. In Three-Dimensional Molded Interconnect Devices (3D-MID), 63–108. München: Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.3139/9781569905524.003.
Der volle Inhalt der QuelleFranke, Jörg. „Structuring and Metallization“. In Three-Dimensional Molded Interconnect Devices (3D-MID), 63–111. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.1007/978-1-56990-552-4_3.
Der volle Inhalt der QuellePfarr-Harfst, Mieke, und Stefanie Wefers. „Digital 3D Reconstructed Models – Structuring Visualisation Project Workflows“. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection, 544–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48496-9_43.
Der volle Inhalt der QuellePfleging, Wilhelm, Petronela Gotcu, Peter Smyrek, Yijing Zheng, Joong Kee Lee und Hans Jürgen Seifert. „Lithium-Ion Battery—3D Micro-/Nano-Structuring, Modification and Characterization“. In Laser Micro-Nano-Manufacturing and 3D Microprinting, 313–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59313-1_11.
Der volle Inhalt der QuelleGill, Andrew A., und Frederik Claeyssens. „3D Structuring of Biocompatible and Biodegradable Polymers Via Stereolithography“. In Methods in Molecular Biology, 309–21. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-984-0_19.
Der volle Inhalt der QuelleBuchberger, Gerda, Martina Muck, Cristina Plamadeala und Johannes Heitz. „Laser Structuring for Biomedical Applications“. In Springer Series in Optical Sciences, 1105–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14752-4_31.
Der volle Inhalt der QuelleXiao, Jianxiong, Jingni Chen, Dit-Yan Yeung und Long Quan. „Structuring Visual Words in 3D for Arbitrary-View Object Localization“. In Lecture Notes in Computer Science, 725–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88690-7_54.
Der volle Inhalt der QuelleOhn, Syng-Yup. „Neighborhood Decomposition of 3D Convex Structuring Elements for Morphological Operations“. In Computer Analysis of Images and Patterns, 644–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11556121_79.
Der volle Inhalt der QuelleJorgensen, Carl-Johan, und Fabrice Lamarche. „From Geometry to Spatial Reasoning : Automatic Structuring of 3D Virtual Environments“. In Motion in Games, 353–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25090-3_30.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "3D structuring"
Malinauskas, Mangirdas, Simas Sakirzanovas, Viktorija Padolskyte, Darius Gailevicius, Vygantas Mizeikis, Kestutis Staliunas, Saulius Juodkazis et al. „3D opto-structuring of ceramics at nanoscale“. In 3D Printed Optics and Additive Photonic Manufacturing, herausgegeben von Georg von Freymann, Alois M. Herkommer und Manuel Flury. SPIE, 2018. http://dx.doi.org/10.1117/12.2306883.
Der volle Inhalt der QuelleShamir, Joseph, Rafael Piestun und Boris Spektor. „3D light structuring and some applications“. In Selected Papers from the International Conference on Optics and Optoelectronics, herausgegeben von Kehar Singh, Om P. Nijhawan, Arun K. Gupta und A. K. Musla. SPIE, 1999. http://dx.doi.org/10.1117/12.346785.
Der volle Inhalt der QuelleHeller, Marcel, Dieter Kaiser, Maik Stegemann, Georg Holfeld, Nicoló Morgana, Jens Schneider und Daniel Sarlette. „Grayscale lithography: 3D structuring and thickness control“. In SPIE Advanced Lithography, herausgegeben von Will Conley. SPIE, 2013. http://dx.doi.org/10.1117/12.2008847.
Der volle Inhalt der QuelleDinescu, Adrian, und Adina Bragaru. „Silicon 3D structuring by anodization Florea ^Craciunoiu“. In 2008 International Semiconductor Conference. IEEE, 2008. http://dx.doi.org/10.1109/smicnd.2008.4703363.
Der volle Inhalt der QuelleAtescan, Yagmur, und Namiko Yamamoto. „3D Structuring of Magnetoelastomers for Anisotropic Actuation Properties“. In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2258.
Der volle Inhalt der QuelleShitrit, Nir, und Connie J. Chang-Hasnain. „Toward 3D Imaging with Ultracompact Structured Light System of Metasurface-Combining VCSELs“. In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3th3a.1.
Der volle Inhalt der QuelleDavis, Ericson R., Jeremy M. Eckhause, David K. Peterson und Vitali Volovoi. „An Analytics Framework for Structuring 3D Printing Deployment Decisions“. In 2019 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2019. http://dx.doi.org/10.1109/rams.2019.8769235.
Der volle Inhalt der QuelleChen, M. H., Y. C. Lin und Y. C. Chou. „Laser-assist 3D Selective Structuring on SiP Module AiP Application“. In 2023 International Conference on Electronics Packaging (ICEP). IEEE, 2023. http://dx.doi.org/10.23919/icep58572.2023.10129666.
Der volle Inhalt der QuelleMizeikis, Vygantas, Darius Gailevičius, Domas Paipulas und Kęstutis Staliūnas. „Tailoring optical birefringence of polymers using 3D femtosecond laser structuring“. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XVI, herausgegeben von Georg von Freymann, Eva Blasco und Debashis Chanda. SPIE, 2023. http://dx.doi.org/10.1117/12.2649678.
Der volle Inhalt der QuelleS., Bigot, Bissacco G. und Valentinčič J. „Die-Sinking Micro EDM for Complex 3D Structuring – Research Directions“. In 8th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-07-0319-6_232.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "3D structuring"
Kharchenko, Yuliya V., Olena M. Babenko und Arnold E. Kiv. Using Blippar to create augmented reality in chemistry education. CEUR Workshop Proceedings, Juli 2021. http://dx.doi.org/10.31812/123456789/4630.
Der volle Inhalt der Quelle