Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Absorption du CO2“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Absorption du CO2" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Absorption du CO2"
Pongayi Ponnusamy Selvi and Rajoo Baskar, Pongayi Ponnusamy Selvi and Rajoo Baskar. „Mass Transfer Enhancement for CO2 Absorption in Structured Packed Absorption Column“. Journal of the chemical society of pakistan 41, Nr. 5 (2019): 820. http://dx.doi.org/10.52568/000803/jcsp/41.05.2019.
Der volle Inhalt der QuelleYANASE, Ikuo, Hirofumi OTSUKA und Hidehiko KOBAYASHI. „CO2 absorption of CeO2-coated α-LiFeO2“. Journal of the Ceramic Society of Japan 119, Nr. 1396 (2011): 933–38. http://dx.doi.org/10.2109/jcersj2.119.933.
Der volle Inhalt der QuelleYan, Shuiping, Qingyao He, Wenchao Wang und Shefeng Li. „CO2 Absorption Using Biogas Slurry: CO2 Absorption Enhancement Induced by Biomass Ash“. Energy Procedia 114 (Juli 2017): 890–97. http://dx.doi.org/10.1016/j.egypro.2017.03.1232.
Der volle Inhalt der QuelleChristiani, Natalia, Yayat Hidayat und Sutrisno Trisno. „CO2 Emission and Absorption Estimation in Bandung City by Implementing CO2 Emission Rate Reduction Simulation Using the Stella Program“. 3BIO: Journal of Biological Science, Technology and Management 3, Nr. 1 (13.07.2021): 28–41. http://dx.doi.org/10.5614/3bio.2021.3.1.4.
Der volle Inhalt der QuelleLívanský, Karel, und Jiří Doucha. „Additional CO2 saturation of thin-layer outdoor micro algal cultures : CO2 mass transfer and absorption efficiency“. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 87 (02.12.1997): 145–54. http://dx.doi.org/10.1127/algol_stud/87/1997/145.
Der volle Inhalt der QuelleNagano, Yatsuhisa, Tetsu Kiyobayashi und Tomoshige Nitta. „CO2 absorption in C60 solid“. Chemical Physics Letters 217, Nr. 3 (Januar 1994): 186–90. http://dx.doi.org/10.1016/0009-2614(94)80005-7.
Der volle Inhalt der QuelleVilleret, Murielle. „Optical-absorption spectrum ofCdGa2Se4:Co2+“. Physical Review B 39, Nr. 14 (15.05.1989): 10236–38. http://dx.doi.org/10.1103/physrevb.39.10236.
Der volle Inhalt der QuelleKim, Hyung-Gon, und Wha-Tek Kim. „Optical absorption ofZnGa2S4andZnGa2S4:Co2+crystals“. Physical Review B 41, Nr. 12 (15.04.1990): 8541–44. http://dx.doi.org/10.1103/physrevb.41.8541.
Der volle Inhalt der QuelleLiu, Lili, Yongsheng Ji, Zhanguo Ma, Furong Gao und Zhishan Xu. „Study on the Effects of Ultrasonic Agitation on CO2 Adsorption Efficiency Improvement of Cement Paste“. Applied Sciences 11, Nr. 15 (26.07.2021): 6877. http://dx.doi.org/10.3390/app11156877.
Der volle Inhalt der QuelleJin, Mei, Li Yan Zhou, Ping Lu, Jin Huang Wang und Guo Xian Yu. „Performance of MDEA-PZ-TETA for Absorption and Desorption of CO2“. Advanced Materials Research 864-867 (Dezember 2013): 1721–24. http://dx.doi.org/10.4028/www.scientific.net/amr.864-867.1721.
Der volle Inhalt der QuelleDissertationen zum Thema "Absorption du CO2"
Kouneli, Athina. „CO2 absorption in power plants : Emphasizing on CO2 absorption in biphasic solvent“. Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21842.
Der volle Inhalt der QuelleSjöstrand, Filip, und Reza Yazdi. „Absorption of CO2 : - by Ammonia“. Thesis, Växjö universitet, Institutionen för teknik och design, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5256.
Der volle Inhalt der QuelleI detta examensarbete har absorptionseffektivitet av CO2 hos olika vätskelösningar undersökts genom gasabsorption i en slumpmässigt packad kolonn. För att karakterisera absorptionen absorberades även SO2 i några experiment. Rapporten är utförd med anledning av de stora mängder koldioxid som släpps ut i atmosfären, främst från fossileldade kraftverk. För att minska dessa utsläpp kan koldioxiden avskiljas från rökgaserna genom olika tekniker t.ex. genom CO2-absorption med ammoniak. Arbetet består av en teoridel och en laborativ del med mätningar och beräkningar. I den experimentella delen konstruerades ett system med en absorptionskolonn och tillhörande mätutrustning. Olika vätskelösningar bestående av rent vatten, kaliumkarbonatlösning och ammoniak i olika koncentrationer användes till att ta upp koldioxid genom motströms absorption. Även SO2 absorberades i kaliumkarbonatlösning för att bestämma gasfilmkonstanten. Absorptionsgraden av CO2 varierade från några få procent i försöket med vatten upp till 7 % med kaliumkarbonatlösningen. CO2-absorptionen av ammoniak varierade med koncentrationen och gav en avskiljning på mellan 12 och 94 %. Ammoniakförsöken gjordes med både vid 10 och 20 °C. Generellt erhölls en bättre CO2-avskiljning vid 20°C, vilket bekräftas av teorin.
Joakim, Gustavsson, und Lager Niclas. „Absorption av CO2 i ammoniaklösning“. Thesis, KTH, Industriell ekologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-211844.
Der volle Inhalt der QuelleConstantinou, A. „CO2 absorption in microstructured membrane reactors“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1348316/.
Der volle Inhalt der QuelleZoannou, Kali-Stella. „Aspects of degradation of monoethanolamine solutions during Co2 absorption“. Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/18346/.
Der volle Inhalt der QuelleOhle, Andrea. „CO2-Abtrennung aus Gasströmen durch Absorption in Poly(methyldiglykol)amin“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-23497.
Der volle Inhalt der QuelleThis dissertation presents a process for the absorptive CO2-separation from gas streams, which shows a lower energy requirement than established methods by using the newly developed absorption liquid GenosorbN in a postcombustion-process. To retrofit an already existing power plant, the postcombustion-process is advantageous, because it needs the least changes in the power plant-process itself compared to the IGCC- or the Oxyfuel-process. The absorbents discussed for the CO2-separation up to now, for example MEA (mono-ethanol-amine), cause a high energy requirement mainly in the solvent regeneration, which has to be provided additionally from the power plant. The solvent GenosorbN (chemical notation: poly(methyldiglycol)amine) was developed in cooperation between the Institute of Process Engineering and Environmental Engineering of the Technical University of Dresden and the Clariant GmbH. GenosorbN is a hybrid-absorbent and therefore it shows both physical and chemical bonding forces. Based on the solvents characteristic of solubility for CO2 and important data on chemical media (for example heat capacity and enthalpy of solution) operating parameters for an energetic advantageous technical application were identified by a lot of test series at a pilot plant. The measurements show that the absorption process with the undiluted GenosorbN has a circa 20 - 27 % lower energy demand for the solvent regeneration compared to the MEA-process to reach a degree of separation of 90 %. Furthermore a low-value heating steam with lower temperature and therefore lower pressure level suffices because of the significant lower (40 - 50 K) regeneration temperature. An additional pressure reduction to 400 mbar absolute pressure in the regeneration column favours the solvent regeneration considerably
Ystad, Paul Andreas Marchioro. „Power Plant with CO2 Capture based on Absorption : Integration Study“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-11057.
Der volle Inhalt der QuelleLeifsen, Henning. „Post-Combustion CO2 Capture Using Chemical Absorption : Minimizing Energy Requirement“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12865.
Der volle Inhalt der QuelleMajeed, Hammad. „Reactive Absorption of CO2 in Single and Blended Amine Systems“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for kjemisk prosessteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22792.
Der volle Inhalt der QuelleLu, Yuexia. „Experimental Studies on CO2 Absorption in Hollow Fiber Membrane Contactor“. Licentiate thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-9617.
Der volle Inhalt der QuelleBücher zum Thema "Absorption du CO2"
Madeddu, Claudio, Massimiliano Errico und Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04579-1.
Der volle Inhalt der QuelleBudzianowski, Wojciech M., Hrsg. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47262-1.
Der volle Inhalt der QuelleMadeddu, Claudio, Massimiliano Errico und Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping: Modeling, Analysis and Design. Springer, 2019.
Den vollen Inhalt der Quelle findenNakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai und Hidetaka Yamada. Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods. Springer, 2019.
Den vollen Inhalt der Quelle findenBudzianowski, Wojciech M. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems. Springer, 2018.
Den vollen Inhalt der Quelle findenBudzianowski, Wojciech M. Energy Efficient Solvents for CO2 Capture by Gas-Liquid Absorption: Compounds, Blends and Advanced Solvent Systems. Springer, 2016.
Den vollen Inhalt der Quelle findenNasimudeen, Abdul. Normal respiratory function. Herausgegeben von Patrick Davey und David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0125.
Der volle Inhalt der QuelleAlexandrowicz, C. H. The Role of German Treaty Making in the Partition of Africa (1980). Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198766070.003.0022.
Der volle Inhalt der QuellePuntis, John. Iron deficiency. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198759928.003.0009.
Der volle Inhalt der QuelleGutiérrez, Orlando M. Fibroblast growth factor 23, Klotho, and phosphorus metabolism in chronic kidney disease. Herausgegeben von David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0119.
Der volle Inhalt der QuelleBuchteile zum Thema "Absorption du CO2"
Yu, W., T. Wang, M. X. Fang, H. Hei und Z. Y. Luo. „CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture“. In Clean Coal Technology and Sustainable Development, 591–96. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_80.
Der volle Inhalt der QuellePantoleontos, G., S. P. Kaldis, D. Koutsonikolas, P. Grammelis und G. P. Sakellaropoulos. „CO2 Absorption in a Mini-module Membrane Contactor“. In Global Warming, 307–13. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1017-2_18.
Der volle Inhalt der QuellePuxty, Graeme, Marcel Maeder und Robert Bennett. „Reactive Chemical Absorption of CO2 by Organic Molecules“. In Sustainable Carbon Capture, 29–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003162780-2.
Der volle Inhalt der QuelleOrhan, Ozge Yuksel, Cyril Sunday Ume und Erdogan Alper. „The Absorption Kinetics of CO2 into Ionic Liquid—CO2 Binding Organic Liquid and Hybrid Solvents“. In Green Energy and Technology, 241–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47262-1_11.
Der volle Inhalt der QuelleNoroozi, Javad, William R. Smith, William R. Smith, William R. Smith und William R. Smith. „Molecular Simulation of pK Values and CO2 Reactive Absorption Prediction“. In The Three Sisters, 185–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119510079.ch9.
Der volle Inhalt der QuelleIsa, Faezah, Haslinda Zabiri, Salvinder Kaur Marik Singh und Azmi M. Shariff. „Dynamic Modelling for High Pressure CO2 Absorption from Natural Gas“. In Communications in Computer and Information Science, 261–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6502-6_23.
Der volle Inhalt der QuelleSrinivasan, K., und M. C. Sashikkumar. „Behavioural Study on Concrete with Organic Materials for CO2 Absorption“. In Proceedings of International Conference on Innovative Technologies for Clean and Sustainable Development (ICITCSD – 2021), 201–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93936-6_17.
Der volle Inhalt der QuelleQi, Weikai, und William R. Smith. „Molecular Simulation of Reactive Absorption of CO2 in Aqueous Alkanolamine Solutions“. In Cutting-Edge Technology for Carbon Capture, Utilization, and Storage, 277–79. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119363804.ch19.
Der volle Inhalt der QuelleFox, M. J., N. S. Higdon, D. R. Dean, C. M. Hamilton, D. C. Senft, J. A. Dowling, D. F. Pierrottet, S. Ghoshroy und S. B. Alejandro. „CO2 Differential Absorption Lidar (DIAL) Research at the Air Force Phillips Laboratory“. In Advances in Atmospheric Remote Sensing with Lidar, 471–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60612-0_114.
Der volle Inhalt der QuelleHe, Hui, Mengxiang Fang, Wei Yu, Qunyang Xiang, Tao Wang und Zhongyang Luo. „A Low-Cost Chemical Absorption Scheme for 500,000 t/y CO2 Capture Project“. In Clean Coal Technology and Sustainable Development, 373–78. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_50.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Absorption du CO2"
Eckel, Hans-Albert. „CO2 Laser Absorption in Ablation Plasmas“. In BEAMED ENERGY PROPULSION: Fourth International Symposium on Beamed Energy Propulsion. AIP, 2006. http://dx.doi.org/10.1063/1.2203270.
Der volle Inhalt der QuelleJiang, Lan, und Hai-Lung Tsai. „Modeling of CO2 Gas Excitation Under CO2 Laser Irradiation“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15625.
Der volle Inhalt der QuelleHao Zhiwu, Li Fangqin, Li Henan und Li Yanchao. „Progress of absorption CO2 by membrane contactor“. In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930614.
Der volle Inhalt der QuelleVasil'ev, B. I., und O. M. Mannoun. „Differential absorption lidar using NH3-CO2 laser“. In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628086.
Der volle Inhalt der QuelleKang, Yong Tae, und Seonggon Kim. „CO2 ABSORPTION/REGENERATION PERFORMANCE ENHANCEMENT BY NANOABSORBENTS“. In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.kn.000019.
Der volle Inhalt der QuelleYun, Soung Hee, Young Eun Kim, Yo Han Seong, Sung Chan Nam, Il Soo Chu und Yeo Il Yoon. „CO2 Absorption of Chemical Phase Transitional Absorbents: Absorption Capacity and Reaction Mechanism“. In Games and Graphics 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.65.02.
Der volle Inhalt der QuelleWang Yinjie, Liu Jiping, Kan Meixiu, Lu Xiaobing und Liu Zequan. „The Performance of the CO2 absorption on Li2ZrO3“. In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930640.
Der volle Inhalt der QuelleNomura, S., K. Fujita und U. Dubuet. „Absorption Spectroscopy of CO2 Flows in Expansion Tube“. In Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0350-cd.
Der volle Inhalt der QuelleAforkoghene Aromada, Solomon, und Lars Øi. „Simulation of improved absorption configurations for CO2 capture“. In The 56th Conference on Simulation and Modelling (SIMS 56), October, 7-9, 2015, Linköping University, Sweden. Linköping University Electronic Press, 2015. http://dx.doi.org/10.3384/ecp1511921.
Der volle Inhalt der QuelleJacobs, P., P. G. Paul, P. H. M. Feron, C. J. Savage und J. Witt. „Integrated CO2 and Humidity Control by Membrane Gas Absorption“. In International Conference on Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/972560.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Absorption du CO2"
Gary T. Rochelle, Andrew Sexton, Jason Davis, Marcus Hilliard, Qing Xu, David Van Wagener und Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/907880.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marcus Hilliard und Amornvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/895539.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marus Hiilliard, Qing Xu, David Van Wagener und Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. US: University Of Texas At Austin, Dezember 2006. http://dx.doi.org/10.2172/899120.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton, Jason Davis, Marcus Hilliard und Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), Juli 2006. http://dx.doi.org/10.2172/889472.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Babatunde Oyenekan, Andrew Sexton und Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/882401.
Der volle Inhalt der QuelleRochelle, Gary T., Frank Seibert, Fred Closmann, Tim Cullinane, Jason Davis, George Goff, Marcus Hilliard et al. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/922797.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, J.Tim Cullinane, Marcus Hilliard, Jennifer Lu, Babatunde Oyenekan und Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), Juli 2004. http://dx.doi.org/10.2172/829575.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Jennifer Lu, Babatunde Oyenekan und Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/835452.
Der volle Inhalt der QuelleGary T. Rochelle, Marcus Hilliard, Eric Chen, Babatunde Oyenekan, Ross Dugas, John McLees, Andrew Sexton und Amorvadee Veawab. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), Januar 2005. http://dx.doi.org/10.2172/876056.
Der volle Inhalt der QuelleGary T. Rochelle, Eric Chen, Jennifer Lu, Babatunde Oyenekan und Ross Dugas. CO2 CAPTURE BY ABSORPTION WITH POTASSIUM CARBONATE. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/840473.
Der volle Inhalt der Quelle