Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Activation de H₂.

Zeitschriftenartikel zum Thema „Activation de H₂“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Activation de H₂" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Qiu, Youai, Julia Struwe, and Lutz Ackermann. "Metallaelectro-Catalyzed C–H Activation by Weak Coordination." Synlett 30, no. 10 (2019): 1164–73. http://dx.doi.org/10.1055/s-0037-1611568.

Der volle Inhalt der Quelle
Annotation:
The merger of organometallic C–H activation with electrocatalysis has emerged as a powerful strategy for molecular synthesis, avoiding the use of toxic and expensive chemical oxidants in stoichiometric quantities. This review summarizes recent progress in transition-metal-catalyzed electrochemical C–H activation by weak chelation assistance until March 2019.1 Introduction2 Ruthenaelectro-Catalyzed C–H Activation3 Rhodaelectro-Catalyzed C–H Activation4 Iridaelectro-Catalyzed C–H Activation5 Summary and Outlook
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Yunyun, and Baoli Zhao. "Step-Economical C–H Activation Reactions Directed by In Situ Amidation." Synthesis 52, no. 21 (2020): 3211–18. http://dx.doi.org/10.1055/s-0040-1707124.

Der volle Inhalt der Quelle
Annotation:
Owing to the inherent ability of amides to chelate transition-metal catalysts, amide-directed C–H activation reactions constitute a major tactic in directed C–H activation reactions. While the conventional procedures for these reactions usually involve prior preparation and purification of amide substrates before the C–H activation, the step economy is actually undermined by the operation of installing the directing group (DG) and related substrate purification. In this context, directed C–H activation via in situ amidation of the crude material provides a new protocol that can significantly e
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ilies, Laurean. "Iron-Catalyzed C-H Bond Activation." Journal of Synthetic Organic Chemistry, Japan 75, no. 8 (2017): 802–9. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ahmed, A. El-Sayed, Y. Khaireldin Nahid, and A. El-Hefny Eman. "Review for metal and organocatalysis of heterocyclic C-H functionalization." World Journal of Advanced Research and Reviews 9, no. 1 (2021): 001–30. https://doi.org/10.5281/zenodo.4533706.

Der volle Inhalt der Quelle
Annotation:
Over the last few decades, significant efforts have been put forth towards the C−H bond group functionalization by transition-metalcatalysis and organocatalysis. Several efficient strategies to convert C-H bond to other groups C-C, C-N, C-O bonds have been implemented. The most attractive C-H bond functionalization was the C-H heterocyclic compounds activation that is practical method in organic synthesis. The new C–C, C–N and C–O bond as formed from the C-H bond activation by two diverse ways metal catalysis and/or organocatalysis. The most important is the synthesis o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

LI, Chao-Jun. "C―H Activation." Acta Physico-Chimica Sinica 35, no. 9 (2019): 905. http://dx.doi.org/10.3866/pku.whxb201903057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bergman, Robert G. "C–H activation." Nature 446, no. 7134 (2007): 391–93. http://dx.doi.org/10.1038/446391a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

WILSON, ELIZABETH. "H ACTIVATION, REVERSIBLY." Chemical & Engineering News 84, no. 47 (2006): 21. http://dx.doi.org/10.1021/cen-v084n047.p021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Holland, Herbert L. "C–H activation." Current Opinion in Chemical Biology 3, no. 1 (1999): 22–27. http://dx.doi.org/10.1016/s1367-5931(99)80005-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sauermann, Nicolas, Tjark H. Meyer, Youai Qiu, and Lutz Ackermann. "Electrocatalytic C–H Activation." ACS Catalysis 8, no. 8 (2018): 7086–103. http://dx.doi.org/10.1021/acscatal.8b01682.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Qiang, Yulong Zhang, Jennifer J. Marden, Botond Banfi, and John F. Engelhardt. "Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury." Biochemical Journal 411, no. 3 (2008): 531–41. http://dx.doi.org/10.1042/bj20071534.

Der volle Inhalt der Quelle
Annotation:
c-Src has been shown to activate NF-κB (nuclear factor κB) following H/R (hypoxia/reoxygenation) by acting as a redox-dependent IκBα (inhibitory κB) tyrosine kinase. In the present study, we have investigated the redox-dependent mechanism of c-Src activation following H/R injury and found that ROS (reactive oxygen species) generated by endosomal Noxs (NADPH oxidases) are critical for this process. Endocytosis following H/R was required for the activation of endosomal Noxs, c-Src activation, and the ability of c-Src to tyrosine-phosphorylate IκBα. Quenching intra-endosomal ROS during reoxygenat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Dioumaev, Vladimir K., Patrick J. Carroll та Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions". Angewandte Chemie International Edition 42, № 33 (2003): 3947–49. http://dx.doi.org/10.1002/anie.200352078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Dioumaev, Vladimir K., Patrick J. Carroll та Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions". Angewandte Chemie 115, № 33 (2003): 4077–79. http://dx.doi.org/10.1002/ange.200352078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Choi, Isaac, Julia Struwe, and Lutz Ackermann. "C–H activation by immobilized heterogeneous photocatalysts." Photochemical & Photobiological Sciences 20, no. 12 (2021): 1563–72. http://dx.doi.org/10.1007/s43630-021-00132-9.

Der volle Inhalt der Quelle
Annotation:
AbstractDuring the last decades, the merger of photocatalysis with transition metal chemistry has been surfaced as a sustainable tool in modern molecular syntheses. This Account highlights major advances in synergistic photo-enabled C‒H activations. Inspired by our homogenous ruthenium- and copper-catalyzed C‒H activations in the absence of an exogenous photosensitizer, this Account describes the recent progress on heterogeneous photo-induced C‒H activation enabled by immobilized hybrid catalysts until September 2021, with a topical focus on recyclability as well as robustness of the heterogen
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Jiang, Heming, and Tian-Yu Sun. "The Activating Effect of Strong Acid for Pd-Catalyzed Directed C–H Activation by Concerted Metalation-Deprotonation Mechanism." Molecules 26, no. 13 (2021): 4083. http://dx.doi.org/10.3390/molecules26134083.

Der volle Inhalt der Quelle
Annotation:
A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Zhu, Haoran, Sen Zhao, Yu Zhou, Chunpu Li, and Hong Liu. "Ruthenium-Catalyzed C–H Activations for the Synthesis of Indole Derivatives." Catalysts 10, no. 11 (2020): 1253. http://dx.doi.org/10.3390/catal10111253.

Der volle Inhalt der Quelle
Annotation:
The synthesis of substituted indoles has received great attention in the field of organic synthesis methodology. C–H activation makes it possible to obtain a variety of designed indole derivatives in mild conditions. Ruthenium catalyst, as one of the most significant transition-metal catalysts, has been contributing in the synthesis of indole scaffolds through C–H activation and C–H activation on indoles. Herein, we attempt to present an overview about the construction strategies of indole scaffold and site-specific modifications for indole scaffold via ruthenium-catalyzed C–H activations in r
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Pan, Subhas Chandra. "Organocatalytic C–H activation reactions." Beilstein Journal of Organic Chemistry 8 (August 27, 2012): 1374–84. http://dx.doi.org/10.3762/bjoc.8.159.

Der volle Inhalt der Quelle
Annotation:
Organocatalytic C–H activation reactions have recently been developed besides the traditional metal-catalysed C–H activation reactions. The recent non-asymmetric and asymmetric C–H activation reactions mediated by organocatalysts are discussed in this review.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Yeston, Jake. "C–H activation goes macro." Science 371, no. 6535 (2021): 1217.5–1218. http://dx.doi.org/10.1126/science.371.6535.1217-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yeston, Jake. "Cyclopropanes through C–H activation." Science 369, no. 6511 (2020): 1580.7–1581. http://dx.doi.org/10.1126/science.369.6511.1580-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Moselage, Marc, Jie Li, and Lutz Ackermann. "Cobalt-Catalyzed C–H Activation." ACS Catalysis 6, no. 2 (2015): 498–525. http://dx.doi.org/10.1021/acscatal.5b02344.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Liu, Weiping, and Lutz Ackermann. "Manganese-Catalyzed C–H Activation." ACS Catalysis 6, no. 6 (2016): 3743–52. http://dx.doi.org/10.1021/acscatal.6b00993.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Holland, Herbert L. "ChemInform Abstract: C-H Activation." ChemInform 30, no. 28 (2010): no. http://dx.doi.org/10.1002/chin.199928306.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kantam, M. Lakshmi, Chandrakanth Gadipelly, Gunjan Deshmukh, K. Rajender Reddy, and Suresh Bhargava. "Copper Catalyzed C−H Activation." Chemical Record 19, no. 7 (2018): 1302–18. http://dx.doi.org/10.1002/tcr.201800107.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Su, Miaoshen, Cheng Li, and Jingjun Ma. "Iron-catalyzed C−H Activation." Journal of the Chinese Chemical Society 63, no. 10 (2016): 828–40. http://dx.doi.org/10.1002/jccs.201600184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wencel-Delord, Joanna, and Françoise Colobert. "Asymmetric C(sp2)H Activation." Chemistry - A European Journal 19, no. 42 (2013): 14010–17. http://dx.doi.org/10.1002/chem.201302576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Shi, Renyi, Lijun Lu, Hangyu Xie, et al. "C8–H bond activation vs. C2–H bond activation: from naphthyl amines to lactams." Chemical Communications 52, no. 90 (2016): 13307–10. http://dx.doi.org/10.1039/c6cc06358f.

Der volle Inhalt der Quelle
Annotation:
Pd-catalyzed selective amine-oriented C8–H bond functionalization/N-dealkylative carbonylation of naphthyl amines has been achieved. The amine group from dealkylation is proposed to be the directing group for promoting this process. It represents a straightforward and easy method to access various biologically important benzo[cd]indol-2(1H)-one derivatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Tsoureas, Nikolaos, Jennifer C. Green, and F. Geoffrey N. Cloke. "C–H and H–H activation at a di-titanium centre." Chemical Communications 53, no. 98 (2017): 13117–20. http://dx.doi.org/10.1039/c7cc07726b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nikonov, Georgii I., Sergei F. Vyboishchikov, and Oleg G. Shirobokov. "Facile Activation of H–H and Si–H Bonds by Boranes." Journal of the American Chemical Society 134, no. 12 (2012): 5488–91. http://dx.doi.org/10.1021/ja300365s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Debatra, Narayan Neogi, Singh Chhetri Satyadeep, Das Purak, Narayan Biswas Achintesh, Choudhury Amitava, and Bandyopadhyay Pinaki. "Role of auxiliary donors in tuning the selectivity of C-H activation in arylazonaphthalenes by palladium(II) : Isolation and photoisomerization of isomeric cyclopalladates." Journal of Indian Chemical Society Vol. 92, Dec 2015 (2015): 1783–90. https://doi.org/10.5281/zenodo.5599293.

Der volle Inhalt der Quelle
Annotation:
Department of Chemistry, University of North Bengal, Siliguri-734 013, West Bengal, India <em>E-mail</em> : pbchem@rediffmail.com Department of Chemistry, Rishi Bankim Chandra College, Naihati-743 165, West Bengal, India Department of Chemistry, Siliguri College, Siliguri-734 001, West Bengal, India Department of Chemistry, Missouri S &amp; T, Rolla, MO 65409-0010, USA Selective activation of C2(naphthyl)-H and C8(naphthyl)-H bonds in a group of substrates having a diazene function as primary donor along with thioether or sulfinyl groups as auxiliary donors has been achieved by palladium(II) a
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zharikov, Sergey I., Karina Y. Krotova, Leonid Belayev та Edward R. Block. "Pertussis toxin activates l-arginine uptake in pulmonary endothelial cells through downregulation of PKC-α activity". American Journal of Physiology-Lung Cellular and Molecular Physiology 286, № 5 (2004): L974—L983. http://dx.doi.org/10.1152/ajplung.00236.2003.

Der volle Inhalt der Quelle
Annotation:
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the β-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Gαi ribosylation is an important step in the activation of l-
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhang, Yanghui, Bo Zhou, and Ailan Lu. "Pd-Catalyzed C–H Silylation Reactions with Disilanes." Synlett 30, no. 06 (2018): 685–93. http://dx.doi.org/10.1055/s-0037-1610339.

Der volle Inhalt der Quelle
Annotation:
Pd-catalyzed C–H silylation reactions remain underdeveloped. General strategies usually rely on the use of complex bidentate directing groups. C,C-Palladacycles exhibit extremely high reactivity towards hexamethyldisilane and can be disilylated very efficiently. The C,C-palladacycles are prepared through halide-directed C–H activation. This account introduces Pd-catalyzed C–H silylation reactions with di­silanes as the silyl source, and is focused on studies on the silylation of C,C-palladacycles.1 Introduction and Background2 Allylic C–H Silylation Reaction3 Coordinating-Ligand-Directed C–H S
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Maron, Laurent, and Odile Eisenstein. "DFT Study of H−H Activation by Cp2LnH d0Complexes." Journal of the American Chemical Society 123, no. 6 (2001): 1036–39. http://dx.doi.org/10.1021/ja0033483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Pavlov, Maria, Per E. M. Siegbahn, Margareta R. A. Blomberg, and Robert H. Crabtree. "Mechanism of H−H Activation by Nickel−Iron Hydrogenase." Journal of the American Chemical Society 120, no. 3 (1998): 548–55. http://dx.doi.org/10.1021/ja971681+.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Fogg, Christiana N. "Unexpected basophil activation." Science 360, no. 6392 (2018): 976.8–977. http://dx.doi.org/10.1126/science.360.6392.976-h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Keyes, Lauren, Tongen Wang, Brian O. Patrick, and Jennifer A. Love. "Pt mediated C–H activation: Formation of a six membered platinacycle via Csp3-H activation." Inorganica Chimica Acta 380 (January 2012): 284–90. http://dx.doi.org/10.1016/j.ica.2011.09.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Soumya, Kumar Sinha, Sasmal Sheuli, Kumar Lahiri Goutam, and Maiti Debabrata. "Template assisted para C-H activation." Journal of Indian Chemical Society Vol. 95, Jul 2018 (2018): 743–49. https://doi.org/10.5281/zenodo.5638474.

Der volle Inhalt der Quelle
Annotation:
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India <em>E</em>-<em>mail:</em> lahiri@chem.iitb.ac.in, dmaiti@chem.iitb.ac.in <em>Manuscript received 03 July 2018, accepted 19 July 2018</em> Synthetic organic chemistry has been revolutionized by transition metal mediated C-H activation in the last few decades. <em>Ortho </em>C-H activation has shown widespread growth in this regard primarily due in fact to the favourable 5-6 membered metallacycle required to direct the <em>ortho</em> C-H functionalization. Reaching out to the distal positions thus requir
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Andrejko, Kenneth M., Jodi Chen, and Clifford S. Deutschman. "Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat." American Journal of Physiology-Gastrointestinal and Liver Physiology 275, no. 6 (1998): G1423—G1429. http://dx.doi.org/10.1152/ajpgi.1998.275.6.g1423.

Der volle Inhalt der Quelle
Annotation:
Interleukin-6 (IL-6) regulates hepatic acute phase responses by activating the transcription factor signal transducer and activator of transcription (STAT)-3. IL-6 also may modulate septic pathophysiology. We hypothesize that 1) STAT-3 activation and transcription of α2-macroglobulin (A2M) correlate with recovery from sepsis and 2) STAT-3 activation and A2M transcription reflect intrahepatic and not serum IL-6. Nonlethal sepsis was induced in rats by single puncture cecal ligation and puncture (CLP) and lethal sepsis via double-puncture CLP. STAT-3 activation and A2M transcription were detecte
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hazra, Somjit, Biplab Mondal, Rajendra Narayan De, and Brindaban Roy. "Pd-catalyzed dehydrogenative C–H activation of iminyl hydrogen with the indole C3–H and C2–H bond: an elegant synthesis of indeno[1,2-b]indoles and indolo[1,2-a]indoles." RSC Advances 5, no. 29 (2015): 22480–89. http://dx.doi.org/10.1039/c4ra16661b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tsoureas, Nikolaos, Jennifer C. Green, and F. Geoffrey N. Cloke. "Correction: C–H and H–H activation at a di-titanium centre." Chemical Communications 54, no. 14 (2018): 1797. http://dx.doi.org/10.1039/c8cc90051e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Ng, L. L., P. Delva, and J. E. Davies. "Intracellular pH regulation of SV-40 virus transformed human MRC-5 fibroblasts and cell membrane cholesterol." American Journal of Physiology-Cell Physiology 264, no. 4 (1993): C789—C793. http://dx.doi.org/10.1152/ajpcell.1993.264.4.c789.

Der volle Inhalt der Quelle
Annotation:
Alterations in membrane cholesterol could affect the activity of various membrane transporters, including the Na(+)-H+ antiport. The effect of cellular cholesterol depletion (with phosphatidylcholine liposomes) and enrichment (with cholesterol and phosphatidylcholine liposomes) on cellular pH regulation was studied in SV-40 virus transformed human MRC-5 fibroblasts. Cellular cholesterol depletion led to activation of the Na(+)-H+ antiport by an increased maximal velocity (Vmax) of the transporter, with no changes in the apparent dissociation constant (Kd) or Hill coefficient for intracellular
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Mao, Weiqing, Li Xiang, Carlos Alvarez Lamsfus, Laurent Maron, Xuebing Leng, and Yaofeng Chen. "Highly Reactive Scandium Phosphinoalkylidene Complex: C–H and H–H Bonds Activation." Journal of the American Chemical Society 139, no. 3 (2017): 1081–84. http://dx.doi.org/10.1021/jacs.6b13081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Cui, Weihong, and Bradford B. Wayland. "Activation of C−H / H−H Bonds by Rhodium(II) Porphyrin Bimetalloradicals." Journal of the American Chemical Society 126, no. 26 (2004): 8266–74. http://dx.doi.org/10.1021/ja049291s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Tischler, Orsolya, Zsófia Bokányi, and Zoltán Novák. "Activation of C–H Activation: The Beneficial Effect of Catalytic Amount of Triaryl Boranes on Palladium-Catalyzed C–H Activation." Organometallics 35, no. 5 (2016): 741–46. http://dx.doi.org/10.1021/acs.organomet.5b01017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Volla, Chandra M. R., Rahul K. Shukla, and Akshay M. Nair. "Allenes: Versatile Building Blocks in Cobalt-Catalyzed C–H Activation." Synlett 32, no. 12 (2021): 1169–78. http://dx.doi.org/10.1055/a-1471-7307.

Der volle Inhalt der Quelle
Annotation:
AbstractThe unique reactivity of allenes has led to their emergence as valuable coupling partners in transition-metal-mediated C–H activation reactions. On the other hand, due to its high abundance and high Lewis acidity, cobalt is garnering widespread interest as a useful catalyst for C–H activation. Here, we summarize cobalt-catalyzed C–H activations involving allenes as coupling partners and then describe our studies on Co(III)-catalyzed C-8 dienylation of quinoline N-oxides with allenes bearing a leaving group at the α-position for realizing a dienylation protocol.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Bowring, Miriam A., Robert G. Bergman, and T. Don Tilley. "Pt-Catalyzed C–C Activation Induced by C–H Activation." Journal of the American Chemical Society 135, no. 35 (2013): 13121–28. http://dx.doi.org/10.1021/ja406260j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ackermann, Lutz, Korkit Korvorapun, Ramesh C. Samanta, and Torben Rogge. "Remote C–H Functionalizations by Ruthenium Catalysis." Synthesis 53, no. 17 (2021): 2911–46. http://dx.doi.org/10.1055/a-1485-5156.

Der volle Inhalt der Quelle
Annotation:
AbstractSynthetic transformations of otherwise inert C–H bonds have emerged as a powerful tool for molecular modifications during the last decades, with broad applications towards pharmaceuticals, material sciences, and crop protection. Consistently, a key challenge in C–H activation chemistry is the full control of site-selectivity. In addition to substrate control through steric hindrance or kinetic acidity of C–H bonds, one important approach for the site-selective C–H transformation of arenes is the use of chelation-assistance through directing groups, therefore leading to proximity-induce
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kim, Yong-Hoon, Jung Hwan Hwang, Kyung-Shim Kim, et al. "Enhanced activation of NAD(P)H." Journal of Hypertension 32, no. 2 (2014): 306–17. http://dx.doi.org/10.1097/hjh.0000000000000018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Shang, Rui, Laurean Ilies, and Eiichi Nakamura. "Iron-Catalyzed C–H Bond Activation." Chemical Reviews 117, no. 13 (2017): 9086–139. http://dx.doi.org/10.1021/acs.chemrev.6b00772.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

ROUHI, MAUREEN. "Real-world C-H bond activation." Chemical & Engineering News 75, no. 41 (1997): 4–5. http://dx.doi.org/10.1021/cen-v075n041.p004a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Keck, James L., Eric R. Goedken, and Susan Marqusee. "Activation/Attenuation Model for RNase H." Journal of Biological Chemistry 273, no. 51 (1998): 34128–33. http://dx.doi.org/10.1074/jbc.273.51.34128.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chatani, Naoto. "C−H Activation - Far from Over." Asian Journal of Organic Chemistry 7, no. 7 (2018): 1135. http://dx.doi.org/10.1002/ajoc.201800380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!