Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Adaptive Vertical Farm (AVF)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Adaptive Vertical Farm (AVF)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Adaptive Vertical Farm (AVF)"
Chnib, Echrak, Patrizia Bagnerini und Ali Zemouche. „LMI based H∞ Observer Design for a Quadcopter Model Operating in an Adaptive Vertical Farm“. IFAC-PapersOnLine 56, Nr. 2 (2023): 10837–42. http://dx.doi.org/10.1016/j.ifacol.2023.10.757.
Der volle Inhalt der QuelleRozsavolgyi, Kornel. „Spatial Complex Model for Wind Farm Site Assessment“. Open Atmospheric Science Journal 3, Nr. 1 (22.08.2009): 204–11. http://dx.doi.org/10.2174/1874282300903010204.
Der volle Inhalt der QuelleSingh, Jagdeep, und Jahrul M. Alam. „Analysis of Wind Power Fluctuation in Wind Turbine Wakes Using Scale-Adaptive Large Eddy Simulation“. Wind 4, Nr. 4 (18.10.2024): 288–310. http://dx.doi.org/10.3390/wind4040015.
Der volle Inhalt der QuelleZhdanova, Yaryna, und Hanna Dorokhina. „Principles of integrity and harmonization of architectural and spatial solutions for vertical farms“. Current problems of architecture and urban planning, Nr. 68 (29.03.2024): 215–27. http://dx.doi.org/10.32347/2077-3455.2024.68.215-227.
Der volle Inhalt der QuellePlisenko, Olga, und Tatiana Varshanina. „Local level GIS module for accurate adaptive landscape farming“. InterCarto. InterGIS 28, Nr. 2 (2022): 829–42. http://dx.doi.org/10.35595/2414-9179-2022-2-28-829-842.
Der volle Inhalt der QuelleMugunthan, Susithra Priyadarshni, Ganapathy Kannan, Harish Mani Chandra und Biswaranjan Paital. „Infection, Transmission, Pathogenesis and Vaccine Development against Mycoplasma gallisepticum“. Vaccines 11, Nr. 2 (17.02.2023): 469. http://dx.doi.org/10.3390/vaccines11020469.
Der volle Inhalt der QuelleGhazal, Iyad, Reema Mansour und Marie Davidová. „AGRI|gen: Analysis and Design of a Parametric Modular System for Vertical Urban Agriculture“. Sustainability 15, Nr. 6 (16.03.2023): 5284. http://dx.doi.org/10.3390/su15065284.
Der volle Inhalt der QuelleOjo, Mike O., und Azlan Zahid. „Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects“. Sensors 22, Nr. 20 (19.10.2022): 7965. http://dx.doi.org/10.3390/s22207965.
Der volle Inhalt der QuelleHendrickson, J., G. F. Sassenrath, D. Archer, J. Hanson und J. Halloran. „Interactions in integrated US agricultural systems: The past, present and future“. Renewable Agriculture and Food Systems 23, Nr. 04 (04.07.2008): 314–24. http://dx.doi.org/10.1017/s1742170507001998.
Der volle Inhalt der QuelleZhang, Jian, Youcun Qi, David Kingsmill und Kenneth Howard. „Radar-Based Quantitative Precipitation Estimation for the Cool Season in Complex Terrain: Case Studies from the NOAA Hydrometeorology Testbed“. Journal of Hydrometeorology 13, Nr. 6 (01.12.2012): 1836–54. http://dx.doi.org/10.1175/jhm-d-11-0145.1.
Der volle Inhalt der QuelleDissertationen zum Thema "Adaptive Vertical Farm (AVF)"
Chnib, Echrak. „Study and Development of an Adaptive Vertical Farm“. Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0016.
Der volle Inhalt der QuelleThe world's population is projected to approach 10 billion by 2050, driving an expected rise in food demand due to population growth, economic development, and urbanization. To meet this demand sustainably, greenhouse systems, particularly vertical farming, have emerged as a promising solution, offering high crop yields per unit of cultivation area. The Adaptive Vertical Farm (AVF), is an innovative industrial vertical greenhouse that dynamically adjusts the distance between its stacked shelves, optimizing growing conditions as plants progress through their growth stages. This adaptive principle overcomes the traditional conflict between maintaining optimal conditions and minimizing energy consumption. This thesis presents two main research axes contributing to the development of the AVF. The first axis focuses on developing a data-driven, black-box growth model for crops cultivated in AVFs. Given the dynamic adaptation to plant growth, an accurate crop growth model is essential for optimizing shelf movement and system control. While traditional dynamic growth models often rely on numerous parameters and are specific to certain crop types, we propose a black-box approach using feedforward neural networks to predict plant height at each time step. This model is adaptable to various crop types, computationally efficient after training, and particularly suitable for innovative vertical farming systems like the AVF. The effectiveness of the model is illustrated through synthetic and real-world datasets, showcasing its potential in optimizing crop production. The second research axis focuses on automating the AVF using Unmanned Aerial Vehicles (UAVs) within the context of Precision Agriculture. UAVs support applications such as crop health monitoring, automatic pollination, spraying, and irrigation, optimizing farm operations across stacked shelves and complementing the existing stationary sensors. To support this automation, we introduce observer designs for nonlinear systems using Linear Matrix Inequalities (LMIs) to provide accurate state estimation for UAVs, ensuring exponential convergence of the observer. Two key contributions are presented: first, a new, less conservative LMI condition applied to solve the H_infty circle criterion design, and second, a nonlinear observer design based on output dynamic extension. This method minimizes the impact of measurement noise and guarantees the Input-to-State Stability (ISS) property of the estimation error via a novel LMI condition
Davey, Calayde Aenis. „Proximity vertical agriculture at the Pretoria West Power Station“. Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/30285.
Der volle Inhalt der QuelleDissertation (MArch(Prof))--University of Pretoria, 2010.
Architecture
unrestricted
Buchteile zum Thema "Adaptive Vertical Farm (AVF)"
Trombadore, Antonella, Beatrice Paludi und Michele D’Ostuni. „Adaptive Design of Green Facades and Vertical Farm: Examples of Technological Integration of Microalgae for Energy Production in Resilient Architecture“. In The Importance of Greenery in Sustainable Buildings, 273–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68556-0_10.
Der volle Inhalt der QuelleSolona, Olena, und Ihor Kupchuk. „DEVELOPMENT OF A FUNCTIONAL MODEL OF A VIBRATING MILL WITH ADAPTIVE CONTROL SYSTEM OF MODE PARAMETERS“. In Modernization of research area: national prospects and European practices. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-221-0-12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Adaptive Vertical Farm (AVF)"
Bagnerini, Patrizia, Mauro Gaggero, Marco Ghio und Franco Malerba. „Adaptive Vertical Farm for Space Cultivation: A First Proof of Concept“. In IAF/IAA Space Life Sciences Symposium, Held at the 75th International Astronautical Congress (IAC 2024), 1192–200. Paris, France: International Astronautical Federation (IAF), 2024. https://doi.org/10.52202/078355-0143.
Der volle Inhalt der QuelleChnib, Echrak, Patrizia Bagnerini, Mauro Gaggero und Ali Zemouche. „Parameter Estimation of a Dynamic Growth Model for Lettuce in an Adaptive Vertical Farm“. In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE), 1169–74. IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711477.
Der volle Inhalt der QuelleBagnerini, Patrizia, Echrak Chnib, Mauro Gaggero und Ali Zemouche. „Adaptive Vertical Farm for space farming“. In Angewandte Automatisierungstechnik in Lehre und Entwicklung an Hochschulen 2023. Hochschule für Technik, Wirtschaft und Kultur Leipzig, 2023. http://dx.doi.org/10.33968/2023.45.
Der volle Inhalt der QuelleBagnerini, Patrizia, Mauro Gaggero und Marco Ghio. „Model Predictive Control for the Scheduling of Seedings in an Adaptive Vertical Farm“. In 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. http://dx.doi.org/10.1109/cdc49753.2023.10384015.
Der volle Inhalt der QuelleBagnerini, Patrizia, Mauro Gaggero, Marco Ghio, Franco Malerba und Michele Angelo Malerba. „Adaptive Vertical Farm for Fresh Food Production in Orbital Stations and Future Lunar Settlements“. In 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2022. http://dx.doi.org/10.1109/metroaerospace54187.2022.9856102.
Der volle Inhalt der QuelleBagnerini, Patrizia, Mauro Gaggero und Marco Ghio. „Mixed-Integer Linear Programming for the Scheduling of Seedings in an Industrial Adaptive Vertical Farm“. In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023. http://dx.doi.org/10.1109/case56687.2023.10260439.
Der volle Inhalt der QuelleBagnerini, Patrizia, Mauro Gaggero, Marco Ghio und Franco Malerba. „The Adaptive Vertical Farm as an Efficient Tool for the Cultivation of Multiple Crops in Space“. In 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2023. http://dx.doi.org/10.1109/metroaerospace57412.2023.10189949.
Der volle Inhalt der Quelle