Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Advanced materials and technologies“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Advanced materials and technologies" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Advanced materials and technologies"
You, Zhanping, Qingli Dai und Feipeng Xiao. „Advanced Paving Materials and Technologies“. Applied Sciences 8, Nr. 4 (09.04.2018): 588. http://dx.doi.org/10.3390/app8040588.
Der volle Inhalt der QuelleNatesan, K. „Materials performance in advanced fossil technologies“. JOM 43, Nr. 11 (November 1991): 61–67. http://dx.doi.org/10.1007/bf03222723.
Der volle Inhalt der QuelleNovák, Pavel. „Advanced Powder Metallurgy Technologies“. Materials 13, Nr. 7 (08.04.2020): 1742. http://dx.doi.org/10.3390/ma13071742.
Der volle Inhalt der QuelleHernandez‐Sosa, Gerardo. „InnovationLab Special Section in Advanced Materials Technologies“. Advanced Materials Technologies 6, Nr. 2 (Februar 2021): 2001069. http://dx.doi.org/10.1002/admt.202001069.
Der volle Inhalt der QuelleTitov, A. „Advanced materials and technologies for modern constructions“. Nanoindustry Russia, Nr. 5 (2015): 48–54. http://dx.doi.org/10.22184/1993-8578.2015.59.5.48.54.
Der volle Inhalt der QuellePowell, Cynthia A., und Bryan D. Morreale. „Materials Challenges in Advanced Coal Conversion Technologies“. MRS Bulletin 33, Nr. 4 (April 2008): 309–15. http://dx.doi.org/10.1557/mrs2008.64.
Der volle Inhalt der QuelleWłosiński, Władysław. „Environmentally friendly welding technologies for advanced materials“. Welding International 25, Nr. 12 (Dezember 2011): 923–26. http://dx.doi.org/10.1080/09507116.2010.540845.
Der volle Inhalt der Quelle(Sam) Froes, F. H. „Advanced Materials and Processing Technologies (AMPT-2003)“. Materials Technology 19, Nr. 1 (Januar 2004): 40–44. http://dx.doi.org/10.1080/10667857.2004.11753166.
Der volle Inhalt der QuelleYAMANAKA, TATSUO. „Advanced Materials are innovating in Space Technologies“. Sen'i Gakkaishi 42, Nr. 5 (1986): P158—P161. http://dx.doi.org/10.2115/fiber.42.5_p158.
Der volle Inhalt der QuelleOHMORI, Hitoshi. „Advanced Materials Fabrication for Nano/Micro Technologies“. Journal of the Society of Mechanical Engineers 108, Nr. 1040 (2005): 533. http://dx.doi.org/10.1299/jsmemag.108.1040_533.
Der volle Inhalt der QuelleDissertationen zum Thema "Advanced materials and technologies"
Aricci, G. „ELECTROCHEMICAL TECHNOLOGIES: ADVANCED ELECTRODE MATERIALS FOR ENVIRONMENTAL APPLICATION“. Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150133.
Der volle Inhalt der QuelleFan, Liangdong. „Development and characterization of functional composite materials for advanced energy conversion technologies“. Doctoral thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134111.
Der volle Inhalt der QuelleQC 20131122
Fendrich, Murilo Alexandre. „Solar concentration for the environment industry: photocatalytic materials and application technologies“. Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/285695.
Der volle Inhalt der QuelleFendrich, Murilo Alexandre. „Solar concentration for the environment industry: photocatalytic materials and application technologies“. Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/285695.
Der volle Inhalt der QuelleKomatsu, Hideyuki. „Elucidation of Reaction Mechanism for High Energy Cathode Materials in Lithium Ion Battery using Advanced Analysis Technologies“. Kyoto University, 2019. http://hdl.handle.net/2433/242753.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(人間・環境学)
甲第21876号
人博第905号
新制||人||216(附属図書館)
2018||人博||905(吉田南総合図書館)
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 内本 喜晴, 教授 田部 勢津久, 教授 吉田 鉄平
学位規則第4条第1項該当
Klein, Mario, Frank Podlesak, Kevin Höfer, Holger Seidlitz, Colin Gerstenberger, Peter Mayr und Lothar Kroll. „Advanced Joining Technologies for Load and Fibre Adjusted FRP-Metal Hybrid Structures“. Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-177669.
Der volle Inhalt der QuelleDragusanu, Mihai. „Design of Soft–Rigid Devices for Rehabilitative and Assistive Robotics“. Doctoral thesis, Università di Siena, 2023. https://hdl.handle.net/11365/1225317.
Der volle Inhalt der QuelleHoffmann, Viola [Verfasser]. „Conductive advanced carbon materials from biomass for the application in energy storage and conversion technologies (Electrochemical Double-Layer Capacitors and Direct Carbon Fuel Cells) / Viola Hoffmann“. Düren : Shaker, 2020. http://d-nb.info/1222396181/34.
Der volle Inhalt der QuelleHoudouin, Alexandre. „Vers une paroi acoustique absorbante en technologie MEMS“. Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1020/document.
Der volle Inhalt der QuelleThe work presented in this thesis focuses on the development of a sound absorbent thin solution able to absorb sound waves of low frequency (500 - 1500 Hz). Noise is, actually, the primary source of environmental pollution raised by the public. This discomfort requires the establishment of acoustic solutions in order to improve the acoustic comfort. However, under certain conditions, the thickness of absorbent solutions strongly limit their use. Indeed, in general, more frequencies are low more the acoustic solutions used must be thick. The sound absorption noise of the solution presented in this work is based on a network of miniature electrodynamic transducers controlled from appropriate electrical loads connected to the terminals of the transducers. An analytical model of the behavior of sound absorbing wall was developed. This model takes into account the behavior of electrodynamic transducers used and the acoustic coupling between the various sources that are particularly important in the area of low frequencies. This model has been validated by two means : i) finite element modeling and ii) measuring the absorption of acoustic prototypes. Two types of absorbent walls were made. One is based on commercial micro-speakers, the other on a miniature MEMS transducer of similar dimensions but the conversion efficiency is an order of magnitude greater than conventional micro-speakers. Analytical modeling has shown two ways of improvements that have been undertaken, the first on the removal of short circuits present at the transducer, the second on optimizing the force factor for improving the conversion efficiency of electro-mechanics. The results sound absorption obtained from the MEMS transducers show that the solution has a real interest in the low frequency range where conventional solutions are not very effective
Choi, Hyeok. „Novel Preparation of Nanostructured Titanium Dioxide Photocatalytic Particles, Films, Membranes, and Devices for Environmental Applications“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1176943161.
Der volle Inhalt der QuelleBücher zum Thema "Advanced materials and technologies"
Ismail, Azman, Wardiah Mohd Dahalan und Andreas Öchsner, Hrsg. Advanced Materials and Engineering Technologies. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92964-0.
Der volle Inhalt der QuelleAttmann, Osman. Green architecture: Advanced technologies and materials. New York: McGraw-Hill, 2010.
Den vollen Inhalt der Quelle findenGreen architecture: Advanced technologies and materials. New York: McGraw-Hill, 2010.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Advanced Ceramic Technologies & Products. Tokyo: Springer Japan, 2012.
Den vollen Inhalt der Quelle findenWang, Guanglin. Progress in advanced manufacturing technologies: Special topic volume on advanced manufacturing technologies. Durnten-Zurich, Switzerland: Trans Tech Publications Ltd., 2012.
Den vollen Inhalt der Quelle findenUnited States. Bureau of Mines., Hrsg. Material use patterns, intermaterial competition, advanced materials technologies: Information & analysis materials program. Washington, D.C.?: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Den vollen Inhalt der Quelle findenUpadhyayula, Sreedevi, und Amita Chaudhary. Advanced Materials and Technologies for Wastewater Treatment. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003138303.
Der volle Inhalt der QuelleLithium-ion batteries: Advanced materials and technologies. Boca Raton: Taylor & Francis, 2012.
Den vollen Inhalt der Quelle findenKolisnychenko, Stanislav. Advanced Materials and Technologies. Trans Tech Publications, Limited, 2021.
Den vollen Inhalt der Quelle findenKolisnychenko, Stanislav. Advanced Materials and Technologies. Trans Tech Publications, Limited, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Advanced materials and technologies"
Rani, Manviri, und Uma Shanker. „Advanced Treatment Technologies“. In Handbook of Environmental Materials Management, 1289–339. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-73645-7_33.
Der volle Inhalt der QuelleRani, Manviri, und Uma Shanker. „Advanced Treatment Technologies“. In Handbook of Environmental Materials Management, 1–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58538-3_33-1.
Der volle Inhalt der QuelleMaitra, Soumyajit, Souhardya Bera und Subhasis Roy. „Application to Advanced Materials Simulation“. In Computational Technologies in Materials Science, 19–48. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003121954-2.
Der volle Inhalt der QuelleMeszaros, Mark W. „Advanced Recycling Technologies for Plastics“. In Conversion And Utilization Of Waste Materials, 53–75. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9781315140360-6.
Der volle Inhalt der QuelleKumari, Neeraj, Sushma und Firdaus Parveen. „Need for Advanced Materials and Technologies“. In Advanced Materials and Technologies for Wastewater Treatment, 35–58. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003138303-3.
Der volle Inhalt der QuelleReza Rezaie, Hamid, Hassan Beigi Rizi, Mojdeh Mahdi Rezaei Khamseh und Andreas Öchsner. „3D-Printing Technologies for Dental Material Processing“. In Advanced Structured Materials, 201–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48931-1_6.
Der volle Inhalt der QuelleZhang, Dingyou, und James J. Q. Lu. „3D Integration Technologies: An Overview“. In Materials for Advanced Packaging, 1–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45098-8_1.
Der volle Inhalt der QuelleChanchani, Rajen. „3D Integration Technologies – An Overview“. In Materials for Advanced Packaging, 1–50. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-78219-5_1.
Der volle Inhalt der QuelleKleiner, Felix, und Wolfgang Fleischmann. „Technologies of Threadlocking and Interference-Fit Adhesive Joints“. In Advanced Structured Materials, 227–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/8611_2010_39.
Der volle Inhalt der QuelleAgee, John T., Andrew Obok Opok und Marie de Lazzer. „Solar Tracker Technologies: Market Trends and Field Applications“. In Advanced Materials Research, 339–44. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-450-2.339.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Advanced materials and technologies"
Kozlova, Olga V., Anvar R. Zimnurov und Olga I. Odintsova. „Advanced finish technologies textile materials“. In INTERNATIONAL SCIENTIFIC-TECHNICAL SYMPOSIUM (ISTS) «IMPROVING ENERGY AND RESOURCE-EFFICIENT AND ENVIRONMENTAL SAFETY OF PROCESSES AND DEVICES IN CHEMICAL AND RELATED INDUSTRIES». The Kosygin State University of Russia, 2021. http://dx.doi.org/10.37816/eeste-2021-1-235-238.
Der volle Inhalt der QuelleKurimura, Sunao. „Advanced quasi-phase-matched materials and technologies“. In 2016 IEEE Photonics Conference (IPC). IEEE, 2016. http://dx.doi.org/10.1109/ipcon.2016.7831239.
Der volle Inhalt der QuelleHasegawa, Tatsuo. „Advanced Printed Electronics – Materials and Junction Technologies“. In 2019 19th International Workshop on Junction Technology (IWJT). IEEE, 2019. http://dx.doi.org/10.23919/iwjt.2019.8802890.
Der volle Inhalt der QuelleTITRAN, ROBERT, TONI GROBSTEIN und DAVID ELLIS. „Advanced materials for space nuclear power systems“. In Conference on Advanced SEI Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-3530.
Der volle Inhalt der QuelleMartin-Luengo, M. A., L. Gonzalez Gil, A. M. Martinez Serrano, E. Ruiz-Hitzky, M. Yates, M. Ramos, J. L. Salgado et al. „Renewable Raw Materials for advanced applications“. In 2011 World Congress on Sustainable Technologies (WCST). IEEE, 2011. http://dx.doi.org/10.1109/wcst19361.2011.6114229.
Der volle Inhalt der QuelleLynam, Niall R. „Automotive applications of chromogenic materials“. In Institutes for Advanced Optical Technologies, herausgegeben von Carl M. Lampert und Claes-Göran Granqvist. SPIE, 1990. http://dx.doi.org/10.1117/12.2283607.
Der volle Inhalt der QuelleWilder, A. T. „Materials for advanced electric machines: an overview“. In 2005 IEEE Electric Ship Technologies Symposium. IEEE, 2005. http://dx.doi.org/10.1109/ests.2005.1524718.
Der volle Inhalt der QuelleDubowski, Jan J. „Laser technologies for manufacturing of advanced materials and devices“. In Symposium on High-Power Lasers and Applications, herausgegeben von Henry Helvajian, Koji Sugioka, Malcolm C. Gower und Jan J. Dubowski. SPIE, 2000. http://dx.doi.org/10.1117/12.387595.
Der volle Inhalt der QuelleHoffelner, Wolfgang. „Materials Databases and Knowledge Management for Advanced Nuclear Technologies“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77692.
Der volle Inhalt der QuellePaniez, Patrick J., Benedicte P. Mortini, Severine Gally, Alain Prola, Charles Rosilio und Pierre-Olivier Sassoulas. „Understanding advanced lithographic materials: challenges and new characterization techniques“. In Microelectronic Manufacturing Technologies, herausgegeben von Chris A. Mack und Tom Stevenson. SPIE, 1999. http://dx.doi.org/10.1117/12.346879.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Advanced materials and technologies"
Kim, H., M. C. Clifford, S. B. Darling, S. W. Snyder, C. Chen, M. Kaminski, A. Heifetz et al. Advanced Materials and Technologies for Resilient Infrastructure Systems. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1433498.
Der volle Inhalt der QuelleYang, Z., P. Dong, S. Liu, S. Babu, G. Olson und T. DebRoy. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/940295.
Der volle Inhalt der QuelleLiby, Alan L., und Hiram Rogers. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation. Office of Scientific and Technical Information (OSTI), Oktober 2013. http://dx.doi.org/10.2172/1095669.
Der volle Inhalt der QuelleSorrell, C. A. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/494105.
Der volle Inhalt der QuellePavlicek, Anna, Hrsg. Advanced Materials for innovative solar cell technologies - part 2 (NanoTrust-Dossier No 057en - February 2022). Vienna: self, 2022. http://dx.doi.org/10.1553/ita-nt-057en.
Der volle Inhalt der QuelleGazsó, André, Hrsg. Advanced Materials for innovative solar cell technologies - part 1 (NanoTrust-Dossier No 056en - November 2021). Vienna: self, 2022. http://dx.doi.org/10.1553/ita-nt-056en.
Der volle Inhalt der QuelleDurkee, Joe W., Ben Cipiti, Scott Francis Demuth, Andrew James Fallgren, Ken Jarman, Shelly Li, Dave Meier et al. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1329653.
Der volle Inhalt der QuelleMiller, Mike, Ben Cipiti, Scott Francis Demuth, Joe W. Durkee, Jr., Andrew James Fallgren, Ken Jarman, Shelly Li et al. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap. Office of Scientific and Technical Information (OSTI), Januar 2017. http://dx.doi.org/10.2172/1341846.
Der volle Inhalt der QuelleKennedy, Alan, Jonathon Brame, Taylor Rycroft, Matthew Wood, Valerie Zemba, Charles Weiss, Matthew Hull, Cary Hill, Charles Geraci und Igor Linkov. A definition and categorization system for advanced materials : the foundation for risk-informed environmental health and safety testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41803.
Der volle Inhalt der QuelleHuang, Xiaodi, und Richard Gertsch. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS. Office of Scientific and Technical Information (OSTI), Juli 2001. http://dx.doi.org/10.2172/785195.
Der volle Inhalt der Quelle