Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Advanced materials and technologies.

Zeitschriftenartikel zum Thema „Advanced materials and technologies“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Advanced materials and technologies" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

You, Zhanping, Qingli Dai und Feipeng Xiao. „Advanced Paving Materials and Technologies“. Applied Sciences 8, Nr. 4 (09.04.2018): 588. http://dx.doi.org/10.3390/app8040588.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Natesan, K. „Materials performance in advanced fossil technologies“. JOM 43, Nr. 11 (November 1991): 61–67. http://dx.doi.org/10.1007/bf03222723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Novák, Pavel. „Advanced Powder Metallurgy Technologies“. Materials 13, Nr. 7 (08.04.2020): 1742. http://dx.doi.org/10.3390/ma13071742.

Der volle Inhalt der Quelle
Annotation:
Powder metallurgy is a group of advanced processes for the synthesis, processing, and shaping of various kinds of materials. Initially inspired by ceramics processing, the methodology comprising of the production of a powder and its transformation to a compact solid product has attracted great attention since the end of World War II. At present, there are many technologies for powder production (e.g., gas atomization of the melt, chemical reduction, milling, and mechanical alloying) and its consolidation (e.g., pressing and sintering, hot isostatic pressing, and spark plasma sintering). The most promising ones can achieve an ultra-fine or nano-grained structure of the powder, and preserve it during consolidation. Among these methods, mechanical alloying and spark plasma sintering play a key role. This Special Issue gives special focus to the advancement of mechanical alloying, spark plasma sintering and self-propagating high-temperature synthesis methods, as well as to the role of these processes in the development of new materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hernandez‐Sosa, Gerardo. „InnovationLab Special Section in Advanced Materials Technologies“. Advanced Materials Technologies 6, Nr. 2 (Februar 2021): 2001069. http://dx.doi.org/10.1002/admt.202001069.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Titov, A. „Advanced materials and technologies for modern constructions“. Nanoindustry Russia, Nr. 5 (2015): 48–54. http://dx.doi.org/10.22184/1993-8578.2015.59.5.48.54.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Powell, Cynthia A., und Bryan D. Morreale. „Materials Challenges in Advanced Coal Conversion Technologies“. MRS Bulletin 33, Nr. 4 (April 2008): 309–15. http://dx.doi.org/10.1557/mrs2008.64.

Der volle Inhalt der Quelle
Annotation:
AbstractCoal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO2, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO2 capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Włosiński, Władysław. „Environmentally friendly welding technologies for advanced materials“. Welding International 25, Nr. 12 (Dezember 2011): 923–26. http://dx.doi.org/10.1080/09507116.2010.540845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

(Sam) Froes, F. H. „Advanced Materials and Processing Technologies (AMPT-2003)“. Materials Technology 19, Nr. 1 (Januar 2004): 40–44. http://dx.doi.org/10.1080/10667857.2004.11753166.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

YAMANAKA, TATSUO. „Advanced Materials are innovating in Space Technologies“. Sen'i Gakkaishi 42, Nr. 5 (1986): P158—P161. http://dx.doi.org/10.2115/fiber.42.5_p158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

OHMORI, Hitoshi. „Advanced Materials Fabrication for Nano/Micro Technologies“. Journal of the Society of Mechanical Engineers 108, Nr. 1040 (2005): 533. http://dx.doi.org/10.1299/jsmemag.108.1040_533.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Müller, Erich A. „Interface Science for Advanced Materials & Technologies“. Adsorption Science & Technology 32, Nr. 1 (Januar 2014): i—ii. http://dx.doi.org/10.1260/0263-6174.32.1.i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Palmero, Paola, und Stéphane Hocquet. „Advanced materials and technologies for bone engineering“. Materials Science and Engineering: C 95 (Februar 2019): 342. http://dx.doi.org/10.1016/j.msec.2018.09.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Boyes, E. D. „LVEDS For Advanced Materials and Semiconductor Technologies“. Microscopy and Microanalysis 5, S2 (August 1999): 314–15. http://dx.doi.org/10.1017/s1431927600014896.

Der volle Inhalt der Quelle
Annotation:
The need to analyze bulk samples containing features with submicron dimensions has driven revaluation of the processes controlling the interaction of electron beams with inorganic, polymer and semiconductor materials, and to development of LVEDS analysis at lower beam energies of E0 <5kV (1,2).It has previously been shown (1,2) that the physics is much as expected with the vertical penetration range (R) along the beam direction in many cases predicted quite accurately for beam energy E0 by the simple Bethe (e.g. in 3) power law with R = F(E0)5/3. These same factors are effective to varying degrees in all three dimensions. The strong dependence of the range on energy has practical importance for the identification of sub-micron particles, including to help to determine the root cause of a defect Fig. 1 is an example of the sequential analysis of the exact same sub-micron particle, with the very real potential for a processing disaster, on the surface of a silicon wafer. When this feature is analyzed with a 3kV electron beam we learn it is alumina (A12O3). The analysis comes only from the target particle and the data have a simple relationship to the chemistry and the sensitivity for the light element (O) is excellent, providing simple and direct qualitative identification of the oxide compound.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Crivello, James V., und Elsa Reichmanis. „Photopolymer Materials and Processes for Advanced Technologies“. Chemistry of Materials 26, Nr. 1 (08.11.2013): 533–48. http://dx.doi.org/10.1021/cm402262g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

KAWAMOTO, Yoshifumi, und Keiichi KIMURA. „Consortium for Advanced Semiconductor Materials and Technologies“. Journal of the Japan Society for Precision Engineering 74, Nr. 5 (2008): 421–24. http://dx.doi.org/10.2493/jjspe.74.421.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Maex, Karen. „Materials aspects of silicides for advanced technologies“. Applied Surface Science 53 (November 1991): 328–37. http://dx.doi.org/10.1016/0169-4332(91)90282-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Levy, Esther, Jovia Jiang, Jolke Perelaer, Marco A. Squillaci und Valentina Lombardo. „The Full Impact of Advanced Materials Technologies“. Advanced Materials Technologies 4, Nr. 8 (August 2019): 1900567. http://dx.doi.org/10.1002/admt.201900567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Levy, Esther, Jovia Jiang und Jolke Perelaer. „Advanced Materials Technologies Celebrates Its First Anniversary“. Advanced Materials Technologies 2, Nr. 4 (April 2017): 1700055. http://dx.doi.org/10.1002/admt.201700055.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

You, Zhanping, und Qingli Dai. „Advanced Pavement Technologies“. Journal of Materials in Civil Engineering 30, Nr. 9 (September 2018): 02018001. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002475.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Valiulis, Algirdas Vaclovas, und Jelena Škamat. „Advanced Materials Research and Technologies Development: Lithuanian Experience“. Solid State Phenomena 165 (Juni 2010): 210–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.165.210.

Der volle Inhalt der Quelle
Annotation:
Lithuania, as a small country, cannot afford creating new knowledge in all the fields of science. It is reasonable to firstly focus on those fields in which Lithuania already has scientific and industrial potential and that clearly declare the biggest demand for innovations as well as capability to invest into innovations. Research institutions here usually focus on fundamental research but both the revenues and the human resources of research institutions are rather poor. Dispersion of the Lithuanian potential of science and studies and the absence of critical mass represent the main reasons why R&D lacks effectiveness. The paper presents the main research fields and high-tech research institutions in Lithuania.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

You, Zhanping, Jian-long Zheng und Hainian Wang. „Achievements and Prospects of Advanced Pavement Materials Technologies“. Applied Sciences 10, Nr. 21 (02.11.2020): 7743. http://dx.doi.org/10.3390/app10217743.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Dini, Danilo, und Michael Hanack. „Phthalocyanines as materials for advanced technologies: some examples“. Journal of Porphyrins and Phthalocyanines 08, Nr. 07 (Juli 2004): 915–33. http://dx.doi.org/10.1142/s1088424604000301.

Der volle Inhalt der Quelle
Annotation:
Metallophthalocyanine complexes and related compounds play an important role in many advanced applications and modern technologies mostly by virtue of their characteristic optical absorption and high chemical stability. As a class of materials made well-known by their vivid and fast colors, it is expected that metallophthalocyanines and analogues, e.g. naphthalocyanines, are going to keep their role with the increasing use of natural and artificial light in the technologies of the future. In the present review some relevant properties of phthalocyanines and related macrocycles for technological applications are analyzed. In particular the electrical conductivity and photoconductivity as well as some nonlinear optical properties (mostly optical limiting), of phthalocyanines and related compounds are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Sorace, Stefano, Bert Blocken, Claudio Borri, Luca Caracoglia, Francisco Javier Molina und Gerhardt Müller. „Advanced Materials and Technologies for Structural Performance Improvement“. Advances in Materials Science and Engineering 2016 (2016): 1–3. http://dx.doi.org/10.1155/2016/1854839.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Obeng, Yaw S., Kurt G. Steiner, Ankineedu N. Velaga und Chien-Shing Pal. „Dielectric Materials for Advanced VLSI and ULSI Technologies“. AT&T Technical Journal 73, Nr. 3 (06.05.1994): 94–111. http://dx.doi.org/10.1002/j.1538-7305.1994.tb00591.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Pacchioni, Gianfranco. „Two-Dimensional Oxides: Multifunctional Materials for Advanced Technologies“. Chemistry - A European Journal 18, Nr. 33 (30.07.2012): 10144–58. http://dx.doi.org/10.1002/chem.201201117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sterle, Luka, Damir Grguraš, Matjaž Kern und Franci Pušavec. „Sustainability Assessment of Advanced Machining Technologies“. Strojniški vestnik – Journal of Mechanical Engineering 65, Nr. 11-12 (18.11.2019): 671–79. http://dx.doi.org/10.5545/sv-jme.2019.6351.

Der volle Inhalt der Quelle
Annotation:
Efficient cooling and lubrication techniques are required to obtain sustainable machining of difficult-to-cut materials, which are the pillars of aerospace, automotive, medical and nuclear industries. Cryogenic machining with the assistance of lubricated Liquid Carbon Dioxide (LCO2) is a novel approach for sustainable manufacturing without the use of harmful water-based metalworking fluids (MWFs). In case of unavoidable use of MWFs under high pressure, such as turning finishing processes of difficult-to-cut materials, the pulsating high pressure delivery of MWFs prolongs the tool life and enables the control over chip length to prevent surface damage of high value-added parts. In this paper, sustainability assessment of both advanced principles was carried out, considering overall costs and operational safety. Experimental tests were executed on difficult-to-cut materials in comparison to conventional flood lubrication. For both techniques, longer tool life compared to flood lubrication was observed additional cleaner production and higher part quality led to reduced long-term overall costs. These advanced machining technologies are also operation safe, proving to be a sustainable alternative to conventional machining.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

G Moodley, Kandasamy. „Advances In Corrosion Inhibition Materials And Technologies: A Review“. Advanced Materials Letters 10, Nr. 4 (01.02.2019): 231–47. http://dx.doi.org/10.5185/amlett.2019.2199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Natesan, K. „Materials Performance in Advanced Combustion Systems“. Journal of Engineering for Gas Turbines and Power 116, Nr. 2 (01.04.1994): 331–37. http://dx.doi.org/10.1115/1.2906824.

Der volle Inhalt der Quelle
Annotation:
A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Patel, Prachi, und Oliver Gutfleisch. „Advanced magnetic materials could drive next-generation energy technologies“. MRS Bulletin 43, Nr. 12 (Dezember 2018): 918–19. http://dx.doi.org/10.1557/mrs.2018.300.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Choi, Myong Yong, Jayaraman Theerthagiri und Gilberto Maia. „2D advanced materials and technologies for industrial wastewater treatment“. Chemosphere 284 (Dezember 2021): 131394. http://dx.doi.org/10.1016/j.chemosphere.2021.131394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Sevost’yanov, M. A., und A. S. Lysenkov. „Sixth Interdisciplinary Scientific Forum “New Materials and Advanced Technologies”“. Russian Journal of Inorganic Chemistry 66, Nr. 8 (August 2021): 1055–56. http://dx.doi.org/10.1134/s0036023621080258.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Santato, Clara, Mihai Irimia Vladu, Maria Holuszko und Lan Yin. „Special Issue of Advanced Materials Technologies on Green Electronics“. Advanced Materials Technologies 7, Nr. 2 (Februar 2022): 2101220. http://dx.doi.org/10.1002/admt.202101220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Tanioka, T. „Future Trends in Aerospace Technologies and Advanced Composite Materials.“ Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan) 47, Nr. 5 (1994): P185—P191. http://dx.doi.org/10.4188/transjtmsj.47.5_p185.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Calame, J. P., und D. K. Abe. „Applications of advanced materials technologies to vacuum electronic devices“. Proceedings of the IEEE 87, Nr. 5 (Mai 1999): 840–64. http://dx.doi.org/10.1109/5.757257.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Wang, Xiaoyan, Jinhua Li und Lingxin Chen. „Advanced preparation technologies and strategies for molecularly imprinted materials“. Chinese Science Bulletin 64, Nr. 13 (26.02.2019): 1352–67. http://dx.doi.org/10.1360/n972018-00964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Levy, Esther, Jovia Jiang, Jolke Perelaer und Babak Mostaghaci. „Celebrating the First Impact Factor of Advanced Materials Technologies“. Advanced Materials Technologies 3, Nr. 8 (August 2018): 1800285. http://dx.doi.org/10.1002/admt.201800285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Asphahani, A. I. „Advanced materials technologies of interest to the process industries“. Materials and Corrosion/Werkstoffe und Korrosion 36, Nr. 11 (November 1985): 501–10. http://dx.doi.org/10.1002/maco.19850361105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Zhu, Bin, und Peter Lund. „Advanced fuel cells: from materials and technologies to applications“. International Journal of Energy Research 35, Nr. 12 (09.08.2011): 1023–24. http://dx.doi.org/10.1002/er.1905.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

O'Brien, J., P. J. Hughes, M. Brunet, B. O'Neill, J. Alderman, B. Lane, A. O'Riordan und C. O'Driscoll. „Advanced photoresist technologies for microsystems“. Journal of Micromechanics and Microengineering 11, Nr. 4 (01.07.2001): 353–58. http://dx.doi.org/10.1088/0960-1317/11/4/312.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hashem, Manafi Sheydan. „Manufacture and processing of advanced composite materials“. Izvestiya MGTU MAMI 8, Nr. 1-2 (10.03.2014): 191–94. http://dx.doi.org/10.17816/2074-0530-67864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kulekci, Mustafa Kemal, Ugur Esme, Funda Kahraman und Seref Ocalir. „Advanced hybrid welding and manufacturing technologies“. Materials Testing 58, Nr. 4 (04.04.2016): 362–70. http://dx.doi.org/10.3139/120.110858.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhu, Rui, Zhongwei Zhang und Yulong Li. „Advanced materials for flexible solar cell applications“. Nanotechnology Reviews 8, Nr. 1 (18.12.2019): 452–58. http://dx.doi.org/10.1515/ntrev-2019-0040.

Der volle Inhalt der Quelle
Annotation:
Abstract The solar power is one of the most promising renewable energy resources, but the high cost and complicated preparation technology of solar cells become the bottleneck of the wide application in many fields. The most important parameter for solar cells is the conversion efficiency, while at the same time more efficient preparation technologies and flexible structures should also be taken under significant consideration [1]. Especially with the rapid development of wearable devices, people are looking forward to the applications of solar cell technology in various areas of life. In this article the flexible solar cells, which have gained increasing attention in the field of flexibility in recent years, are introduced. The latest progress in flexible solar cells materials and manufacturing technologies is overviewed. The advantages and disadvantages of different manufacturing processes are systematically discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Wharry, Janelle P., und Enrico Salvati. „Advanced welding and joining technologies – A commentary“. Materials Today Communications 35 (Juni 2023): 105563. http://dx.doi.org/10.1016/j.mtcomm.2023.105563.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Suzuki, Hirofumi, und Kazuhito Ohashi. „Special Issue on Advanced Abrasive Process Technologies“. International Journal of Automation Technology 13, Nr. 6 (05.11.2019): 721. http://dx.doi.org/10.20965/ijat.2019.p0721.

Der volle Inhalt der Quelle
Annotation:
The demand for high-precision and high-efficiency machining of hard ceramics such as silicon carbide (SiC) for semiconductors and hardened steel for molding dies has significantly increased for power devices in automobiles, optical devices, and medical devices. Certain types of hard metals can be machined by deterministic precision-cutting processes. However, hard and brittle ceramics, hardened steel for molds, or semiconductor materials have to be machined by precision abrasive technologies such as grinding, polishing, and ultrasonic vibration technologies with diamond super abrasives. The machining of high-precision components and their molds/dies by abrasive processes is much more difficult owing to their complex and nondeterministic nature as well as their complex textured surface. Furthermore, high-energy processes with UV lasers and IR lasers, and ultrasonic vibration can be used to assist abrasive technologies for greater precision and efficiency. In this sense, precision grinding and polishing processes are primarily used to generate high-quality and functional components usually made of hard and brittle materials. The surface quality achieved by precision grinding and polishing processes becomes more important to reduce processing time and costs. This special issue features seven research papers on the most recent advances in precision abrasive technologies for hard materials. These papers cover various abrasive machining processes such as grinding, polishing, ultrasonic-assisted grinding, and laser-assisted technologies. We deeply appreciate the careful work of all the authors and thank the reviewers for their incisive efforts. We also hope that this special issue will encourage further research on abrasive technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Ding, Wenjin, und Xiaolei Fan. „Special issue on progress in advanced energy technologies and materials“. Chinese Journal of Chemical Engineering 34 (Juni 2021): 228–29. http://dx.doi.org/10.1016/j.cjche.2021.01.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ma, Jian-Min, und Yu-Tao Li. „Editorial for advanced energy storage and conversion materials and technologies“. Rare Metals 40, Nr. 2 (12.01.2021): 246–48. http://dx.doi.org/10.1007/s12598-020-01654-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Hari M, Arjun, und Lintu Rajan. „Advanced Materials and Technologies for Touch Sensing in Prosthetic Limbs“. IEEE Transactions on NanoBioscience 20, Nr. 3 (Juli 2021): 256–70. http://dx.doi.org/10.1109/tnb.2021.3072954.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Chowdari, B. V. R., und Shweta Agarwala. „Singapore hosts 10th International Conference on Materials for Advanced Technologies“. MRS Bulletin 44, Nr. 10 (Oktober 2019): 817. http://dx.doi.org/10.1557/mrs.2019.246.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wen, Zhen, Hengyu Guo und Longfei Wang. „Editorial for Special Issue: Advanced Materials and Technologies in Nanogenerators“. Nanomaterials 12, Nr. 20 (14.10.2022): 3606. http://dx.doi.org/10.3390/nano12203606.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Arrigoni, Michel. „Metallic Materials and Their Applications in Aerospace and Advanced Technologies“. Metals 12, Nr. 2 (26.01.2022): 226. http://dx.doi.org/10.3390/met12020226.

Der volle Inhalt der Quelle
Annotation:
Exploring the mysteries of the universe, transporting people over longer distances in the safest way, providing energy to a growing global population, and facing environmental changes are among the major challenges that will face humanity in the coming decades: Satellite observations have become essential in monitoring the ecological health of the Earth, but they require space launches that raise the paradox of greenhouse and toxic gases rejection by the use of solid propellants [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie