Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Algal lipids“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Algal lipids" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Algal lipids"
Loria, Mark H., James S. Griffin, George F. Wells und Kurt R. Rhoads. „Effects of feast-famine nutrient regimes on wastewater algal biofuel communities“. PLOS ONE 18, Nr. 1 (04.01.2023): e0279943. http://dx.doi.org/10.1371/journal.pone.0279943.
Der volle Inhalt der QuelleCzerwik-Marcinkowska, Joanna, Katarzyna Gałczyńska, Jerzy Oszczudłowski, Andrzej Massalski, Jacek Semaniak und Michał Arabski. „Fatty Acid Methyl Esters of the Aerophytic Cave Alga Coccomyxa subglobosa as a Source for Biodiesel Production“. Energies 13, Nr. 24 (09.12.2020): 6494. http://dx.doi.org/10.3390/en13246494.
Der volle Inhalt der QuelleK., Santhoshkumar, Prasanthkumar S. und J. G. Ray. „Chlorococcum humicola (Nageli) Rabenhorst as a Renewable Source of Bioproducts and Biofuel“. Journal of Plant Studies 5, Nr. 1 (29.02.2016): 48. http://dx.doi.org/10.5539/jps.v5n1p48.
Der volle Inhalt der QuelleZachleder, Vilém, Veronika Kselíková, Ivan N. Ivanov, Vitali Bialevich, Milada Vítová, Shuhei Ota, Tsuyoshi Takeshita, Shigeyuki Kawano und Kateřina Bišová. „Supra-Optimal Temperature: An Efficient Approach for Overaccumulation of Starch in the Green Alga Parachlorella kessleri“. Cells 10, Nr. 7 (16.07.2021): 1806. http://dx.doi.org/10.3390/cells10071806.
Der volle Inhalt der QuelleHasnain, Maria, Neelma Munir, Zainul Abideen, Heather Macdonald, Maria Hamid, Zaheer Abbas, Ali El-Keblawy, Roberto Mancinelli und Emanuele Radicetti. „Prospects for Biodiesel Production from Emerging Algal Resource: Process Optimization and Characterization of Biodiesel Properties“. Agriculture 13, Nr. 2 (09.02.2023): 407. http://dx.doi.org/10.3390/agriculture13020407.
Der volle Inhalt der QuelleUdiharto, M., Rino Nirwawan und Sri Astuti Rahayu. „The Superiority Of Micro-Algae As A Potential Feedstock For Alternative Energy“. Scientific Contributions Oil and Gas 32, Nr. 1 (17.03.2022): 21–26. http://dx.doi.org/10.29017/scog.32.1.829.
Der volle Inhalt der QuelleBocanegra, Aránzazu, Adrián Macho-González, Alba Garcimartín, Juana Benedí und Francisco José Sánchez-Muniz. „Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus“. International Journal of Molecular Sciences 22, Nr. 8 (07.04.2021): 3816. http://dx.doi.org/10.3390/ijms22083816.
Der volle Inhalt der QuelleCheban, Larysa, Oleksii Khudyi, Maja Prusińska, Arkadiusz Duda, Lidiia Khuda, Grzegorz Wiszniewski, Olha Kushniryk und Andrzej Kapusta. „Survival, proximate composition, and proteolytic activity of Artemia salina bioencapsulated with different algal monocultures“. Fisheries & Aquatic Life 28, Nr. 4 (01.12.2020): 205–15. http://dx.doi.org/10.2478/aopf-2020-0025.
Der volle Inhalt der QuelleAmeka, G. K., L. K. Doamekpor, A. A. Amadu und A. P. Amamoo. „Production of Biodiesel from Marine Macroalgae occurring in the Gulf of Guinea, off the Coast of Ghana“. Ghana Journal of Science 60, Nr. 1 (31.07.2019): 50–58. http://dx.doi.org/10.4314/gjs.v60i1.5.
Der volle Inhalt der QuelleKent, Robert A., und Pierre-Yves Caux. „Sublethal effects of the insecticide fenitrothion on freshwater phytopiankton“. Canadian Journal of Botany 73, Nr. 1 (01.01.1995): 45–53. http://dx.doi.org/10.1139/b95-006.
Der volle Inhalt der QuelleDissertationen zum Thema "Algal lipids"
Teece, Mark A. „Biodegradation of algal lipids and significance for sediment studies“. Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239071.
Der volle Inhalt der QuelleChiodza, Kudzai Godknows. „Desulphurisation of fine coal waste tailings using algal lipids“. Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29892.
Der volle Inhalt der QuelleKing, P. M. „The use of ultrasound on the extraction of microalgal lipids“. Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/4aabbd22-686a-4284-a18d-23de6bcff203/1.
Der volle Inhalt der QuelleOlsen, Rebecca Lynn. „Modification of plant and yeast lipids by heterologous expression of protist, algal, and animal desaturases“. Online access for everyone, 2006. http://www.dissertations.wsu.edu/Dissertations/Fall2006/r_olsen_011907.pdf.
Der volle Inhalt der QuelleJohnson, Michael Ben. „Microalgal Biodiesel Production through a Novel Attached Culture System and Conversion Parameters“. Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32034.
Der volle Inhalt der QuelleMaster of Science
Clemente, Ilaria. „Compartmentalized algal-based nanocarriers as vectors for antioxidants: structural and functional characterization“. Doctoral thesis, Università di Siena, 2022. http://hdl.handle.net/11365/1193669.
Der volle Inhalt der QuelleHamam, Fayez. „Lipase-catalyzed acidolysis of algal oils with a medium-chain fatty acid, capric acid /“. Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,156236.
Der volle Inhalt der QuelleNeto, Riamburgo Gomes de Carvalho. „Estudo dos mecanismos envolvidos na separaÃÃo e ruptura simultÃneas de biomassa algal pelo uso da tecnologia de eletroflotaÃÃo por corrente alternada“. Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=10985.
Der volle Inhalt der QuelleDentre as diversas etapas para a transformaÃÃo de microalgas em biodiesel, os processos de separaÃÃo e a ruptura celular dessa biomassa sÃo particularmente importantes, uma vez que as tecnologias disponÃveis para este fim apresentam elevados custos, comprometendo a viabilidade do aproveitamento energÃtico. Este trabalho teve como objetivo geral estudar os mecanismos envolvidos na separaÃÃo e ruptura simultÃneas de biomassa algal pelo uso da tecnologia de eletroflotaÃÃo por corrente alternada (EFCA), com objetivo principal de extrair o conteÃdo lipÃdico da biomassa algal, assim como verificar o potencial da tecnologia na remoÃÃo de nutrientes de efluentes de lagoas de estabilizaÃÃo. Foram realizados ensaios de coagulaÃÃo/floculaÃÃo em jar test com coagulantes sintÃticos (FeCl3 e Al2(SO4)3) e orgÃnicos (Tanfloc SG e SL) com o objetivo de avaliar a decantaÃÃo quimicamente assistida na separaÃÃo de biomassa algal. Foi desenvolvido um reator de EFCA para operar em batelada, utilizando-se eletrodos nÃo consumÃveis e baixa potÃncia elÃtrica. Foi avaliado o seu potencial de separaÃÃo com e sem o auxÃlio dos mesmos coagulantes utilizados nos testes de jarro e, em seguida, buscou-se variar as frequÃncias de operaÃÃo do conjunto de eletrodos com o objetivo de verificar a condiÃÃo Ãtima para separaÃÃo e rompimento celular das microalgas. Foi tambÃm avaliada a capacidade desta metodologia na remoÃÃo de nutrientes presentes nos efluentes e elucidar os mecanismos envolvidos. Foi possÃvel a remoÃÃo de biomassa algal tanto por meio da decantaÃÃo quimicamente assistida quanto pela EFCA, sendo que a segunda à mais atrativa nÃo somente pelas eficiÃncias de remoÃÃo de turbidez e clorofila-a encontradas, como tambÃm pela nÃo necessidade aparente de utilizaÃÃo de coagulantes, o que traz economia ao processo e facilita a reutilizaÃÃo da biomassa algal. A EFCA mostrou-se ainda capaz de promover com eficiÃncia o rompimento celular das microalgas e fazer com que os lipÃdeos liberados se aderissem à biomassa algal separada pelo processo. Foi possÃvel alcanÃar um rendimento lipÃdico de atà 14% em peso de massa seca, mesmo os estudos tendo sido realizados com uma matriz diversa de microalgas proveniente das lagoas de estabilizaÃÃo. O estudo dos mecanismos envolvidos revelou a boa capacidade do sistema em gerar gÃs hidrogÃnio, o qual alÃm de ajudar na separaÃÃo das microalgal pode tornar futuramente o processo energeticamente sustentÃvel. AlÃm disso, foi verificada a geraÃÃo de espÃcies oxidantes que ajudam tanto o processo de separaÃÃo quanto possivelmente de ruptura celular. O efeito de diferentes frequÃncias de vibraÃÃo nos rendimentos lipÃdicos encontrados nÃo foi aparente. Buscou-se ainda a elucidaÃÃo dos mecanismos de remoÃÃo de fÃsforo total, o que provavelmente se deu pela formaÃÃo de ferro durante o processo, cujos valores ficaram na ordem de 2,5 mg/L depois de 70 minutos de batelada. Jà para a remoÃÃo de amÃnia, possivelmente o mecanismo foi de oxidaÃÃo indireta da amÃnia atravÃs do excesso de Ãcido hipocloroso como a forma predominante de conversÃo da mesma em nitrogÃnio gasoso, o qual ajuda no processo de separaÃÃo. A utilizaÃÃo de microalgas diretamente de lagoas de estabilizaÃÃo mostrou-se uma potencial alternativa aos processos de obtenÃÃo de biomassa tradicionalmente utilizados (fotobiorreator e lagoas do tipo raceway), sendo que a tecnologia proposta se mostrou atrativa para todos processos que demandem separaÃÃo algal.
Among the various steps for microalgae transformation in biodiesel, the harvesting and cell disruption processes are particularly important, since technologies available for this purpose have usually high costs, undermining the energy recovery viability. This work studied the mechanisms involved in the simultaneous harvesting and cell disruption of microalgae using electroflotation by alternating current (EFCA), as well as to investigate the system capacity on nutrients removal from waste stabilization ponds effluents. Coagulation/flocculation tests were performed using synthetic (FeCl3 e Al2(SO4)3) and organic (Tanfloc SG e SL) coagulants to evaluate the chemically assisted sedimentation of the algal biomass. The EFCA reactor was designed to operate in batch, using non-consumable electrodes and low electrical power, and evaluated the harvesting potential in the presence and absence of coagulants. After this, experiments were performed varying the electrode frequency to verify the optima condition for simultaneous harvesting and cell disruption of microalgae. The system capacity in terms of nutrients removal was also investigated as well as the mechanisms involved. It was possible to remove algae biomass both using chemically assisted sedimentation and EFCA. However, the electrolytic technology is more attractive, not only for the turbidity and chlorophyll-a efficiencies founded, but also because there is no apparent need of coagulants, which makes the process cheaper and facilitates the microalgae biomass reuse. The EFCA was even able to promote the cell disruption of microalgae and the liberated lipids were able to attach to the algal biomass separated by the process. A lipid yield of 14 % in terms of dry matter was found, even when a complex matrix from waste stabilization ponds was used. The study of the mechanisms involved in EFCA revealed the good system ability to generate hydrogen gas, which contributes to microalgae harvesting and can make the process even more sustainable under an energetic perspective. Furthermore, the generation of oxidant species was found which helps the harvesting and cell disruption process. The effect of different vibration frequencies in the lipid yield was not apparent. We sought to elucidate the mechanisms involved on total phosphorus removal, and probably the removal was due to iron formation in the process, in which the concentrations were close to 2.5 mg/L after 70 minutes batch time. In terms of ammonia removal, possibly the mechanism was an indirect oxidation by excess of hypochlorous acid to form nitrogen gas, which helps the separation process. The use of microalgae from stabilization ponds showed a potential alternative for the processes traditionally used nowadays for microalgae production (photobioreactor and raceway ponds), and showed to be attractive to all processes that demand microalgae harvesting.
Wong, Yee Keung. „Feasibility of using Chlorella vulgaris for the production of algal lipids, for advancement towards a potential application in the manufacture of commodity chemicals and the treatment of wastewater“. HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/254.
Der volle Inhalt der QuelleWoolsey, Paul A. „Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production“. DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1107.
Der volle Inhalt der QuelleBücher zum Thema "Algal lipids"
D, Cohen Zvi Ph, und Ratledge Colin, Hrsg. Single cell oils: Microbial and algal oils. 2. Aufl. Urbana, Ill: AOCS Press, 2010.
Den vollen Inhalt der Quelle findenKarel, Marcus. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Den vollen Inhalt der Quelle findenZ, Nakhost, und United States. National Aeronautics and Space Administration, Hrsg. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterization of algal proteins and lipids ; status report (March 1985 to June 1986). Cambridge, MA: Dept. of Applied Biological Sciences, Massachusetts Institute of Technology, 1986.
Den vollen Inhalt der Quelle findenNakamura, Yuki, und Yonghua Li-Beisson, Hrsg. Lipids in Plant and Algae Development. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25979-6.
Der volle Inhalt der QuelleM, Tillett David, Solar Energy Research Institute, Georgia Institute of Technology. School of Applied Biology und Georgia Institute of Technology. School of Chemical Engineering, Hrsg. Effects of fluctuating environments on the selection of high yielding microalgae. Golden, Colo: Solar Energy Research Institute, 1987.
Den vollen Inhalt der Quelle findenKhotimchenko, S. V. Lipidy morskikh vodorosleĭ-makrofitov i trav: Struktura, raspredelenie, analiz. Vladivostok: Dalʹnauka, 2003.
Den vollen Inhalt der Quelle findenKnoshaug, Eric P. Current status of the Department of Energy's Aquatic Species Program lipid-focused algae collection. Golden, CO: National Renewable Energy Laboratory, 2009.
Den vollen Inhalt der Quelle findenRatledge, Colin, und Zvi Cohen. Single Cell Oils: Microbial and Algal Oils. AOCS, 2015.
Den vollen Inhalt der Quelle findenAlgae Biofuels: Algal Fuel Producers, High Lipid Content Microalgae, Chevron Corporation, List of Algal Fuel Producers, Botryococcus Braunii. Books LLC, 2010.
Den vollen Inhalt der Quelle findenNakamura, Yuki, und Yonghua Li-Beisson. Lipids in Plant and Algae Development. Springer London, Limited, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Algal lipids"
Kannan, Dheeban Chakravarthi, und Vikram M. Pattarkine. „Recovery of Lipids from Algae“. In Algal Biorefineries, 297–310. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7494-0_12.
Der volle Inhalt der QuelleGuldhe, Abhishek, Krishan Ramluckan, Poonam Singh, Ismail Rawat, Suresh Kumar Mahalingam und Faizal Bux. „Catalytic Conversion of Microalgal Lipids to Biodiesel: Overview and Recent Advances“. In Algal Biofuels, 315–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51010-1_15.
Der volle Inhalt der QuelleGuschina, Irina A., und John L. Harwood. „Algal Lipids and Their Metabolism“. In Algae for Biofuels and Energy, 17–36. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5479-9_2.
Der volle Inhalt der QuelleWainman, Bruce C., Ralph E. H. Smith, Hakumat Rai und John A. Furgal. „Irradiance and Lipid Production in Natural Algal Populations“. In Lipids in Freshwater Ecosystems, 45–70. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0547-0_4.
Der volle Inhalt der QuelleGuschina, Irina A., und John L. Harwood. „Algal lipids and effect of the environment on their biochemistry“. In Lipids in Aquatic Ecosystems, 1–24. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89366-2_1.
Der volle Inhalt der QuelleGupta, Adarsha, Avinesh R. Byreddy und Munish Puri. „Extraction of Lipids and Carotenoids from Algal Sources“. In Food Bioactives, 137–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51639-4_6.
Der volle Inhalt der QuellePatterson, Glenn W. „Sterol Synthesis and Distribution and Algal Phylogeny“. In The Metabolism, Structure, and Function of Plant Lipids, 631–36. Boston, MA: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4684-5263-1_111.
Der volle Inhalt der QuelleAbdullah, Mohd Azmuddin, Hann Ling Wong, Syed Muhammad Usman Shah und Pek Chin Loh. „Algal Pathways and Metabolic Engineering for Enhanced Production of Lipids, Carbohydrates, and Bioactive Compounds“. In Phycobiotechnology, 363–430. Series statement: Innovations in biotechnology; volume 3: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003019510-14.
Der volle Inhalt der QuelleGuldhe, Abhishek, Bhaskar Singh, Faiz Ahmad Ansari, Yogesh Sharma und Faizal Bux. „Extraction and Conversion of Microalgal Lipids“. In Algae Biotechnology, 91–110. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-12334-9_6.
Der volle Inhalt der QuelleRavindran, B., Mayur B. Kurade, Akhil N. Kabra, Byong-Hun Jeon und Sanjay Kumar Gupta. „Recent Advances and Future Prospects of Microalgal Lipid Biotechnology“. In Algal Biofuels, 1–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51010-1_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Algal lipids"
Samek, O., Z. Pilát, J. Ježek, M. Šerý, S. Bernatová, P. Zemánek, L. Nedbal und M. Trtílek. „Raman microspectroscopy monitoring of lipids in algal cells“. In Frontiers in Optics. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/fio.2011.ftua6.
Der volle Inhalt der QuelleBeal, Colin M., Robert E. Hebner, Michael E. Webber, Rodney S. Ruoff und A. Frank Seibert. „The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility“. In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38244.
Der volle Inhalt der QuelleWogan, David M., Michael Webber und Alexandre K. da Silva. „A Resource-Limited Approach to Estimating Algal Biomass Production With Geographical Fidelity“. In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90154.
Der volle Inhalt der QuelleBucy, Harrison, und Anthony J. Marchese. „Oxidative Stability of Algae Derived Methyl Esters Containing Varying Levels of Methyl Eicosapentaenoate and Methyl Docosahexaenoate“. In ASME 2011 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/icef2011-60047.
Der volle Inhalt der QuelleWogan, David M., Alexandre K. da Silva und Michael Webber. „Assessing the Potential for Algal Biofuels Production in Texas“. In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90235.
Der volle Inhalt der QuelleMahapatra, Durga Madhab, H. N. Chanakya und T. V. Ramachandra. „Bioenergy generation from components of a Continuous algal bioreactor: Analysis of lipids, spectroscopic and thermal properties“. In 2013 Annual IEEE India Conference (INDICON). IEEE, 2013. http://dx.doi.org/10.1109/indcon.2013.6725886.
Der volle Inhalt der QuelleBandhu, Sheetal, und Debashish Ghosh. „Genetic modification to enhance single cell oil production in the oleagineous yeast Rhodotorula mucilaginosa“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/bdpk2930.
Der volle Inhalt der QuelleKhot, Mahesh Balwant. „Life cycle assessment (LCA) of microbial oil-derived fuels and other non-fuel products“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/imol9786.
Der volle Inhalt der QuelleUrmanova, Dilyara. „Petroleum Systems Modeling and Hydrocarbon Migration and Oil Potential Assessment of the Southern Side of Pre-Caspian Basin, Kazakhstan“. In SPE Annual Caspian Technical Conference. SPE, 2021. http://dx.doi.org/10.2118/207036-ms.
Der volle Inhalt der QuelleUrmanova, Dilyara. „Petroleum Systems Modeling and Hydrocarbon Migration and Oil Potential Assessment of the Southern Side of Pre-Caspian Basin, Kazakhstan“. In SPE Annual Caspian Technical Conference. SPE, 2021. http://dx.doi.org/10.2118/207036-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Algal lipids"
Sukenik, Assaf, Paul Roessler und John Ohlrogge. Biochemical and Physiological Regulation of Lipid Synthesis in Unicellular Algae with Special Emphasis on W-3 Very Long Chain Lipids. United States Department of Agriculture, Januar 1995. http://dx.doi.org/10.32747/1995.7604932.bard.
Der volle Inhalt der QuelleDavis, Ryan, Daniel Fishman, Edward D. Frank, Mark S. Wigmosta, Andy Aden, Andre M. Coleman, Philip T. Pienkos, Ricahrd J. Skaggs, Erik R. Venteris und Michael Q. Wang. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model. Office of Scientific and Technical Information (OSTI), Juni 2012. http://dx.doi.org/10.2172/1044475.
Der volle Inhalt der QuelleDavis, Ryan, Mary J. Biddy und Susanne B. Jones. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway. Office of Scientific and Technical Information (OSTI), März 2013. http://dx.doi.org/10.2172/1073585.
Der volle Inhalt der QuelleDavis, R., M. Biddy und S. Jones. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway. Office of Scientific and Technical Information (OSTI), März 2013. http://dx.doi.org/10.2172/1076625.
Der volle Inhalt der QuelleDavis, R., C. Kinchin, J. Markham, E. C. D. Tan, L. M. L. Laurens, D. Sexton, D. Knorr, P. Schoen und J. Lukas. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1271650.
Der volle Inhalt der QuelleDavis, R., C. Kinchin, J. Markham, E. Tan, L. Laurens, D. Sexton, D. Knorr, P. Schoen und J. Lukas. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1159351.
Der volle Inhalt der QuelleGoodenough, Ursula. Systems Biology of Lipid Body Formation in the Green Alga Chlamydomonas reinhardtii. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1408918.
Der volle Inhalt der Quelle