Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Amenable action“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Amenable action" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Amenable action"
POPA, SORIN. „CLASSIFICATION OF ACTIONS OF DISCRETE AMENABLE GROUPS ON AMENABLE SUBFACTORS OF TYPE II“. International Journal of Mathematics 21, Nr. 12 (Dezember 2010): 1663–95. http://dx.doi.org/10.1142/s0129167x10006343.
Der volle Inhalt der QuelleBOWEN, LEWIS, und AMOS NEVO. „Pointwise ergodic theorems beyond amenable groups“. Ergodic Theory and Dynamical Systems 33, Nr. 3 (16.04.2012): 777–820. http://dx.doi.org/10.1017/s0143385712000041.
Der volle Inhalt der QuelleBOWEN, LEWIS. „Sofic entropy and amenable groups“. Ergodic Theory and Dynamical Systems 32, Nr. 2 (13.06.2011): 427–66. http://dx.doi.org/10.1017/s0143385711000253.
Der volle Inhalt der QuelleEXEL, RUY, und CHARLES STARLING. „Amenable actions of inverse semigroups“. Ergodic Theory and Dynamical Systems 37, Nr. 2 (06.10.2015): 481–89. http://dx.doi.org/10.1017/etds.2015.60.
Der volle Inhalt der QuelleDownarowicz, Tomasz, Dawid Huczek und Guohua Zhang. „Tilings of amenable groups“. Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, Nr. 747 (01.02.2019): 277–98. http://dx.doi.org/10.1515/crelle-2016-0025.
Der volle Inhalt der QuelleMEYEROVITCH, TOM. „Pseudo-orbit tracing and algebraic actions of countable amenable groups“. Ergodic Theory and Dynamical Systems 39, Nr. 9 (24.01.2018): 2570–91. http://dx.doi.org/10.1017/etds.2017.126.
Der volle Inhalt der QuelleKida, Yoshikata. „Inner amenable groups having no stable action“. Geometriae Dedicata 173, Nr. 1 (01.12.2013): 185–92. http://dx.doi.org/10.1007/s10711-013-9936-0.
Der volle Inhalt der QuelleRen, Xiankun, und Wenxiang Sun. „Local Entropy, Metric Entropy and Topological Entropy for Countable Discrete Amenable Group Actions“. International Journal of Bifurcation and Chaos 26, Nr. 07 (30.06.2016): 1650110. http://dx.doi.org/10.1142/s0218127416501108.
Der volle Inhalt der QuelleMycielski, Jan. „Non-amenable groups with amenable action and some paradoxical decompositions in the plane“. Colloquium Mathematicum 75, Nr. 1 (1998): 149–57. http://dx.doi.org/10.4064/cm-75-1-149-157.
Der volle Inhalt der QuelleDONG, Z., und Y. Y. WANG. „FIXED POINT CHARACTERISATION FOR EXACT AND AMENABLE ACTION“. Bulletin of the Australian Mathematical Society 92, Nr. 2 (16.06.2015): 228–32. http://dx.doi.org/10.1017/s0004972715000520.
Der volle Inhalt der QuelleDissertationen zum Thema "Amenable action"
Pennington, Allen. „Schreier Graphs of Thompson's Group T“. Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6740.
Der volle Inhalt der QuelleLécureux, Jean. „Automorphismes et compactifications d’immeubles : moyennabilité et action sur le bord“. Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10261/document.
Der volle Inhalt der QuelleThe object of this thesis is the study, from different point of views, of automorphism groups of buildings. One of its objectives is to highlight the differences as well as the analogies between affine and non-affine buildings. In order to support this dichotomy, we prove that automorphism groups of non-affine buildings never have a Gelfand pair, contrarily to affine buildings.In the other direction, the analogy between affine and non-affine buildings is supported by the new construction of a combinatorial boundary of a building. In the affine case, this boundary is in fact the polyhedral boundary. We connect the construction of this boundary to other compactifications, such as the Busemann compactification of the graph of chambers. The combinatorial compactification is also isomorphic to the group-theoretic compactification, which embeds the set of chambers into the set of closed subgroups of the automorphism group. We also connect the combinatorial boundary to another space, which generalises a construction of F. Karpelevic for symmetric spaces : the refined boundary of a CAT(0) space.We prove that the maximal amenable subgroups of the automorphism group are, up to finite index, parametrised by the points of the boundary. Finally, we prove that the action of the automorphism group of a locally finite building on its combinatorial boundary is amenable, thus providing resolutions in bounded cohomology and boundary maps. This also gives a new proof that these groups satisfy the Novikov conjecture
Zhang, Qing. „Multiple recurrence and mixing properties for actions of amenable groups /“. The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487759436328088.
Der volle Inhalt der QuelleEpstein, Inessa. „Some results on orbit inequivalent actions of non-amenable groups“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1579720841&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der Quelleua, golodets@ilt kharkov. „The spectrum of Completely Positive Entropy Actions of Countable Amenable Groups“. ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1078.ps.
Der volle Inhalt der QuelleZarka, Benjamin. „La propriété de décroissance rapide hybride pour les groupes discrets“. Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Der volle Inhalt der QuelleA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Sun, Michael. „The Tracial Rokhlin Property for Countable Discrete Amenable Group Actions on Nuclear Tracially Approximately Divisible C*-Algebras“. Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18368.
Der volle Inhalt der QuelleBen, Ahmed Ali. „Géométrie et dynamique des structures Hermite-Lorentz“. Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.
Der volle Inhalt der QuelleIn the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
Hamouda, Hawa. „Modules maps and Invariant subsets of Banach modules of locally compact groups“. 2013. http://hdl.handle.net/1993/17598.
Der volle Inhalt der QuelleBücher zum Thema "Amenable action"
Ocneanu, Adrian. Actions of discrete amenable groups on von neumann algebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0098579.
Der volle Inhalt der QuelleActions of discrete amenable groups on von Neumann algebras. Berlin: Springer-Verlag, 1985.
Den vollen Inhalt der Quelle findenHeath, Robert. Maxims and rules of pleading: In actions real, personal and mixt, popular and penal : describing the nature of declarations, pleas, replications, rejoynders, and all other parts of pleading : shewing their validity and defects, and in what cases they are amenable by the court, or remediable by the statute-law, or otherwise ... London: Printed for Abel Roper, 1992.
Den vollen Inhalt der Quelle findenKammeyer, Janet Whalen, und Daniel J. Rudolph. Restricted Orbit Equivalence for Actions of Discrete Amenable Groups. Cambridge University Press, 2012.
Den vollen Inhalt der Quelle findenKammeyer, Janet Whalen, und Daniel J. Rudolph. Restricted Orbit Equivalence for Actions of Discrete Amenable Groups. Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenOcneanu, Adrian. Actions of Discrete Amenable Groups on von Neumann Algebras. Springer, 1985.
Den vollen Inhalt der Quelle findenOcneanu, Adrian. Actions of Discrete Amenable Groups on Von Neumann Algebras. Springer London, Limited, 2006.
Den vollen Inhalt der Quelle findenKammeyer, Janet Whalen, und Daniel J. Rudolph. Restricted Orbit Equivalence for Actions of Discrete Amenable Groups. Cambridge University Press, 2011.
Den vollen Inhalt der Quelle findenMitchell, Bruce. Resource and Environmental Management. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780190885816.001.0001.
Der volle Inhalt der QuelleFurst, Eric M., und Todd M. Squires. Active microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0007.
Der volle Inhalt der QuelleBuchteile zum Thema "Amenable action"
Kerr, David, und Hanfeng Li. „Entropy for Actions of Amenable Groups“. In Springer Monographs in Mathematics, 193–229. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49847-8_9.
Der volle Inhalt der QuelleCoornaert, Michel. „Mean Topological Dimension for Actions of Amenable Groups“. In Universitext, 191–222. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19794-4_10.
Der volle Inhalt der QuelleLodkin, A. A., und A. M. Vershik. „Approximation for actions of amenable groups and transversal automorphisms“. In Lecture Notes in Mathematics, 331–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074893.
Der volle Inhalt der QuelleScocchi, Marco, Maura Mattiuzzo, Monica Benincasa, Nikolinka Antcheva, Alessandro Tossi und Renato Gennaro. „Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics“. In Peptide-Based Drug Design, 161–76. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-419-3_9.
Der volle Inhalt der QuelleFélix, Yves, John Oprea und Daniel Tanré. „G-spaces“. In Algebraic Models in Geometry, 271–316. Oxford University PressOxford, 2008. http://dx.doi.org/10.1093/oso/9780199206513.003.0007.
Der volle Inhalt der QuelleVyse, Stuart. „Ridiculous Reason“. In The Uses of Delusion, 1–17. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780190079857.003.0001.
Der volle Inhalt der QuelleTrowler, Paul. „The Practice Sensibility and the Challenges of Change“. In Accomplishing Change in Teaching and Learning Regimes, 157–70. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198851714.003.0007.
Der volle Inhalt der Quelle„The New Economic Role of American States“. In The New Economic Role of American States, herausgegeben von R. Scott Fosler, 311–30. Oxford University PressNew York, NY, 1991. http://dx.doi.org/10.1093/oso/9780195067774.003.0017.
Der volle Inhalt der QuellePrice, Nicholas C., und Jacqueline Nairn. „Enzyme activity and mechanism“. In Exploring proteins: a student’s guide to experimental skills and methods. Oxford University Press, 2009. http://dx.doi.org/10.1093/hesc/9780199205707.003.0012.
Der volle Inhalt der QuelleDennett, Anne. „15. Introduction to judicial review“. In Public Law Directions, 339–57. Oxford University Press, 2019. http://dx.doi.org/10.1093/he/9780198807315.003.0015.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Amenable action"
Ghilardi, Silvio, Alessandro Gianola, Marco Montali und Andrey Rivkin. „Safety Verification and Universal Invariants for Relational Action Bases“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/362.
Der volle Inhalt der QuelleEdmondson, Bryce J., Landen A. Bowen, Clayton L. Grames, Spencer P. Magleby, Larry L. Howell und Terri C. Bateman. „Oriceps: Origami-Inspired Forceps“. In ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/smasis2013-3299.
Der volle Inhalt der QuelleMOON, S., und A. VALETTE. „NON-PROPERNESS OF AMENABLE ACTIONS ON GRAPHS WITH INFINITELY MANY ENDS“. In Proceedings of a Conference in Honor of Akbar Rhemtulla. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708670_0020.
Der volle Inhalt der QuelleRuikar, Neha S., Chris A. Satkoski und Greg Shaver. „Control Design Amenable Model of Needle Position for a Direct Acting Piezoelectric Fuel Injector“. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6049.
Der volle Inhalt der QuelleThompson, Richard A. „Photonic Time-Multiplexed Permutation Switching using the Dilated Slipped Banyan Network“. In Photonic Switching. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/phs.1991.we6.
Der volle Inhalt der QuelleKurdila, Andrew J., Yunfei Feng und George A. Lesieutre. „Hybrid System Stability and Capacitive Shunting of Piezoelectric Stiffness“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1694.
Der volle Inhalt der QuelleVashishth, Deepak, Winson George, Jennifer Smith, John B. Brunski und Lee Ostrander. „Hands-on Approaches to Biomechanics Education in a Technologically Connected Classroom“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23022.
Der volle Inhalt der QuelleKrishnan, Arjun S., Ravi Shankar, Tushar K. Ghosh und Richard J. Spontak. „Nanostructured Triblock Copolymer Network With Tailorable Electroactive Response“. In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-529.
Der volle Inhalt der QuelleHadley, G. Ronald. „Understanding leaky-mode arrays via 2-D coupled mode theory“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.maa5.
Der volle Inhalt der QuelleChoquette, Kent D., R. P. Schneider, K. L. Lear, M. Hagerott Crawford, K. M. Geib, J. J. Figiel und Robert Hull. „Robust and Wavelength Insensitive Performance of Selectively Oxidized Vertical-Cavity Lasers“. In Semiconductor Lasers: Advanced Devices and Applications. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/slada.1995.tud.7.
Der volle Inhalt der Quelle