Auswahl der wissenschaftlichen Literatur zum Thema „Angelman Syndromes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Angelman Syndromes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Angelman Syndromes"

1

Salminen, Iiro Ilmari, Bernard J. Crespi und Mikael Mokkonen. „Baby food and bedtime: Evidence for opposite phenotypes from different genetic and epigenetic alterations in Prader-Willi and Angelman syndromes“. SAGE Open Medicine 7 (Januar 2019): 205031211882358. http://dx.doi.org/10.1177/2050312118823585.

Der volle Inhalt der Quelle
Annotation:
Prader–Willi and Angelman syndromes are often referred to as a sister pair of neurodevelopmental disorders, resulting from different genetic and epigenetic alterations to the same chromosomal region, 15q11-q13. Some of the primary phenotypes of the two syndromes have been suggested to be opposite to one another, but this hypothesis has yet to be tested comprehensively, and it remains unclear how opposite effects could be produced by changes to different genes in one syndrome compared to the other. We evaluated the evidence for opposite effects on sleep and eating phenotypes in Prader–Willi syndrome and Angelman syndrome, and developed physiological–genetic models that represent hypothesized causes of these differences. Sleep latency shows opposite deviations from controls in Prader–Willi and Angelman syndromes, with shorter latency in Prader–Willi syndrome by meta-analysis and longer latency in Angelman syndrome from previous studies. These differences can be accounted for by the effects of variable gene dosages of UBE3A and MAGEL2, interacting with clock genes, and leading to acceleration (in Prader–Willi syndrome) or deceleration (in Angelman syndrome) of circadian rhythms. Prader–Willi and Angelman syndromes also show evidence of opposite alterations in hyperphagic food selectivity, with more paternally biased subtypes of Angelman syndrome apparently involving increased preference for complementary foods (“baby foods”); hedonic reward from eating may also be increased in Angelman syndrome and decreased in Prader–Willi syndrome. These differences can be explained in part under a model whereby hyperphagia and food selectivity are mediated by the effects of the genes SNORD-116, UBE3A and MAGEL2, with outcomes depending upon the genotypic cause of Angelman syndrome. The diametric variation observed in sleep and eating phenotypes in Prader–Willi and Angelman syndromes is consistent with predictions from the kinship theory of imprinting, reflecting extremes of higher resource demand in Angelman syndrome and lower demand in Prader–Willi syndrome, with a special emphasis on social–attentional demands and attachment associated with bedtime, and feeding demands associated with mother-provided complementary foods compared to offspring-foraged family-type foods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Panov, Julia, und Hanoch Kaphzan. „Angelman Syndrome and Angelman-like Syndromes Share the Same Calcium-Related Gene Signatures“. International Journal of Molecular Sciences 22, Nr. 18 (13.09.2021): 9870. http://dx.doi.org/10.3390/ijms22189870.

Der volle Inhalt der Quelle
Annotation:
Angelman-like syndromes are a group of neurodevelopmental disorders that entail clinical presentation similar to Angelman Syndrome (AS). In our previous study, we showed that calcium signaling is disrupted in AS, and we identified calcium-target and calcium-regulating gene signatures that are able to differentiate between AS and their controls in different models. In the herein study, we evaluated these sets of calcium-target and calcium-regulating genes as signatures of AS-like and non-AS-like syndromes. We collected a number of RNA-seq datasets of various AS-like and non-AS-like syndromes and performed Principle Component Analysis (PCA) separately on the two sets of signature genes to visualize the distribution of samples on the PC1–PC2 plane. In addition to the evaluation of calcium signature genes, we performed differential gene expression analyses to identify calcium-related genes dysregulated in each of the studied syndromes. These analyses showed that the calcium-target and calcium-regulating signatures differentiate well between AS-like syndromes and their controls. However, in spite of the fact that many of the non-AS-like syndromes have multiple differentially expressed calcium-related genes, the calcium signatures were not efficient classifiers for non-AS-like neurodevelopmental disorders. These results show that features based on clinical presentation are reflected in signatures derived from bioinformatics analyses and suggest the use of bioinformatics as a tool for classification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Luk, Ho-Ming. „Angelman-Like Syndrome: A Genetic Approach to Diagnosis with Illustrative Cases“. Case Reports in Genetics 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9790169.

Der volle Inhalt der Quelle
Annotation:
Epigenetic abnormalities in 15q11-13 imprinted region andUBE3Amutation are the two major mechanisms for molecularly confirmed Angelman Syndrome. However, there is 10% of clinically diagnosed Angelman Syndrome remaining test negative. With the advancement of genomic technology like array comparative genomic hybridization and next generation sequencing methods, it is found that some patients of these test negative Angelman-like Syndromes actually have alternative diagnoses. Accurate molecular diagnosis is paramount for genetic counseling and subsequent management. Despite overlapping phenotypes between Angelman and Angelman-like Syndrome, there are some subtle but distinct features which could differentiate them clinically. It would provide important clue during the diagnostic process for clinicians.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fryer, Alan. „Angelman and Prader-Willi syndromes“. Current Paediatrics 7, Nr. 4 (Dezember 1997): 242–45. http://dx.doi.org/10.1016/s0957-5839(97)80143-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Melvyn W. B., Nikki Fong, Ying Hui Quek, Cyrus S. H. Ho, Beng Yeong Ng und Roger C. M. Ho. „Microdeletion syndromes and psychiatry: An update“. BJPsych Advances 23, Nr. 3 (Mai 2017): 149–57. http://dx.doi.org/10.1192/apt.bp.114.012864.

Der volle Inhalt der Quelle
Annotation:
SummaryMicrodeletion syndrome is an important topic in intellectual disability, associated with various psychiatric symptoms, such as autism, attention deficit, hyperactivity, obsession and compulsion, and psychosis. In this article, we provide a clinical update on the following syndromes and their associated psychiatric disorders: Prader–Willi syndrome, Angelman syndrome, Williams syndrome, Wolf–Hirschhorn syndrome, cri du chat syndrome, DiGeorge syndrome and Rubinstein–Taybi syndrome.Learning Objectives• Gain an up-to-date understanding of the microdeletion syndromes commonly seen in daily practice• Appreciate the association between underlying chromosomal abnormalities and the resultant intellectual disabilities in microdeletion syndromes• Gain up-to-date knowledge about the treatment options for the various microdeletion syndromes commonly seen in daily practice
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cesaityte, Karina, und Danielius Serapinas. „The spectrum of microdeletian syndromes at the hospital of Lithuanian university of health sciences“. Genetika 48, Nr. 3 (2016): 859–66. http://dx.doi.org/10.2298/gensr1603859c.

Der volle Inhalt der Quelle
Annotation:
Microdeletion syndrome is a rare condition which can be diagnosed by fluorescent in situ hybridization (FISH) method. We analyzed microdeletion syndromes cases during ten years period (2005-2015) at The Hospital of Lithuanian University of Health Sciences. We report 2 patients with Prader-Willi syndrome, 2 patients with Smith-Magenis syndrome, 1 patient with Angelman syndrome and 1 patient with Cri du Chat syndrome. All syndromes were confirmed by FISH. These cases contain mainly data about phenotype abnormalities and clinical symptoms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tan, Wen-Hann, Lynne M. Bird, Ronald L. Thibert und Charles A. Williams. „If not Angelman, what is it? a review of Angelman-like syndromes“. American Journal of Medical Genetics Part A 164, Nr. 4 (29.01.2014): 975–92. http://dx.doi.org/10.1002/ajmg.a.36416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Camprubí, Cristina, Maria Dolors Coll, Elisabeth Gabau und Míriam Guitart. „Prader–Willi and Angelman syndromes: genetic counseling“. European Journal of Human Genetics 18, Nr. 2 (07.10.2009): 154–55. http://dx.doi.org/10.1038/ejhg.2009.170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jiang, Yong-hui, Ting-Fen Tsai, Jan Bressler und Arthur L. Beaudet. „Imprinting in Angelman and Prader-Willi syndromes“. Current Opinion in Genetics & Development 8, Nr. 3 (Juni 1998): 334–42. http://dx.doi.org/10.1016/s0959-437x(98)80091-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nicholls, Robert D., Shinji Saitoh und Bernhard Horsthemke. „Imprinting in Prader–Willi and Angelman syndromes“. Trends in Genetics 14, Nr. 5 (Mai 1998): 194–200. http://dx.doi.org/10.1016/s0168-9525(98)01432-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Angelman Syndromes"

1

Mount, Rebecca Helen. „An exploration of pro-social behaviour in genetic syndromes, with a focus on Angelman and Williams syndromes“. Thesis, University of Birmingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Handley, Louise. „Movement disorders and catatonia-like presentations in rare genetic syndromes“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/movement-disorders-and-catatonialike-presentations-in-rare-genetic-syndromes(581c9b5a-0681-4a14-8b49-35fecded2f55).html.

Der volle Inhalt der Quelle
Annotation:
The prevalence of Autism Spectrum Disorder (ASD) and its defining features has been increasingly investigated in genetic syndromes associated with intellectual disability, with syndrome specific profiles reported. The experience of catatonia and other movement disorders in people with ASD has been increasing highlighted within both research and diagnostic guidelines. However, these issues have not typically been investigated alongside other features of ASD within research into genetic syndromes. The first paper in this thesis provides a review of the literature on movement disorders in genetic syndromes associated with ASD, which focuses on the prevalence of reported movement disorders, the methods of assessment used, and the quality of research to date. An empirical study is reported in Paper 2. Within a cohort of individuals with Cornelia de Lange and Fragile X syndromes the prevalence of attenuated behaviour [autistic catatonia] is examined, based on parent/carer report, and the extent to which features of ASD predict later attenuated behaviour is investigated. Paper 3 provides a critical reflection on the first two papers as well as some wider considerations on undertaking research in this area. The results of both the literature review and the empirical study indicated that across a number of genetic syndromes (Angelman syndrome, Cornelia de Lange syndrome, Fragile X syndrome and Rett syndrome) attenuated behaviour [autistic catatonia] and/or movement disorders affect a substantial proportion of individuals. Furthermore, repetitive behaviours, one of the characteristic features of ASD, appear to predict later attenuated behaviour in Cornelia de Lange and Fragile X syndromesThe results presented in this thesis have important implications for the way services support individuals with specific genetic syndromes. Paper 1 confirms the high prevalence of movement problems in Angelman and Rett syndromes, and Paper 2 provides a new insight into movement problems in Cornelia de Lange and Fragile X syndromes. Movement disorders are reported to impact negatively on wellbeing and quality of life in people with ASD, and are likely to have a similar impact on the lives of people with genetic syndromes. Greater awareness and recognition of movement problems in CdLS and FXS is required, and although specialist services may already be aware of some of the above issues, there should be an increased emphasis on ensuring that community services are aware of the needs of individuals with genetic syndromes, including the implications of movement problems for support needs and quality of life.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kokkonen, H. (Hannaleena). „Genetic changes of chromosome region 15q11-q13 in Prader-Willi and Angelman syndromes in Finland“. Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514270274.

Der volle Inhalt der Quelle
Annotation:
Abstract The Prader-Willi (PWS) and Angelman (AS) syndromes are clinically distinct developmental disorders which are caused by genetic defects in the imprinted domain at chromosome 15q11-q13, resulting in the loss of paternal (PWS) or maternal (AS) gene function. In this study, the genetic changes of 15q11-q13 and their possible inheritance in Finnish PWS (n=76) and AS (n=47) patients are described. The diagnosis could be confirmed by laboratory methods in all PWS and in 43 (91%) AS patients. A deletion of 15q11-q13 accounted for 76% of the PWS and 67% of the AS patients in whom a specific genetic defect had been established. The origin of deletion was always paternal in PWS and maternal in AS. In PWS, deletions of four different sizes were detected, while in AS only type I or II deletions were found. The smallest overlap of deletions/critical region detected was from locus D15S13 to locus D15S10 in PWS and from locus D15S128 to locus D15S12 in AS. A rare recurrence of del(15)(q11q13) due to maternal germ line mosaicism is described. Maternal uniparental disomy of chromosome 15 accounted for 21% of PWS patients and paternal UPD for 2% of AS patients. In PWS, most UPD cases were due to errors in maternal meiosis (87%), most commonly leading to maternal heterodisomy (MI error). In AS, a rare error in the second segregation of paternal meiosis was found. UPD was associated with advanced maternal age, the mean being 34.6 years. Imprinting defects were found in 3% of PWS (two non-IC-deletions) and 11% of AS (IC deletion in one sib pair and three non-IC-deletions) patients. In the case with IC deletion, the mutation was seen in several generations. The non-deletion cases were thought to be due to a de novo prezygotic or postzygotic error. In the non-deletion PWS cases, the maternally imprinted paternal chromosome region was shown to have been inherited from the paternal grandmother, while in AS the paternally imprinted maternal chromosome region had been inherited from either the maternal grandfather or the maternal grandmother. The region of IC involved in AS was defined to be 1.15 kb. Five (11%) AS patients with normal DNA methylation test results had a UBE3A mutation. One of the two novel missense mutations (902A→C) had been inherited from the mosaic mother, while the mutation 975T→C was a new one. De novo deletions 1930delAG and 3093delAAGA have also been described previously, suggesting that these sites may be mutation hotspots in UBE3A. Identification of different genetic aetiologies with different recurrence risks is essential for genetic counselling, and close co-operation between clinicians and the laboratory is required both for diagnosis and for the detection of possible inheritance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tunnicliffe, Penelope Louisa. „Self-injurious and aggressive behaviour in Angelman, Cri du Chat and Cornelia de Lange syndromes“. Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/768/.

Der volle Inhalt der Quelle
Annotation:
In a series of studies, the role of operant reinforcement of phenotypic problem behaviours in Angelman, Cri du Chat and Cornelia de Lange syndromes was explored. Firstly, a systematic review of the literature highlighted papers with robust experimental functional analytic designs; providing appropriate methodology for the subsequent studies. The review also showed a trend towards an increase in the number of published papers that linked facets of the behavioural phenotype to challenging behaviour (gene-environment interactions). Next, the phenomenology and correlates of self-injurious and aggressive behaviour in the syndromes were explored at a given level of behavioural specificity. Results showed that self-injury was more common in Cornelia de Lange syndrome and specific forms of aggressive behaviour were common in Angelman syndrome. Experimental functional analysis and structured descriptive assessments were utilised to examine gene-environment interactions in the syndromes and broadly, challenging behaviour in the Cornelia de Lange syndrome group evidenced a stronger association with pain, whereas challenging behaviour in the Angelman syndrome group evidenced a stronger association with positive social reinforcement. Overall, the studies provide evidence that challenging behaviour in genetic syndromes can be influenced by environmental factors. Implications for practice and for informing a comprehensive model of challenging behaviour are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peery, Edwin G. „Using mouse models to study the mechanism of imprinting involved in prader-willi and angelman syndromes“. [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0008392.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--University of Florida, 2004.
Typescript. Title from title page of source document. Document formatted into pages; contains 141 pages. Includes Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Olivera, Curotti Graciela Renée. „Evaluation diagnostique et pronostique des syndromes microdeletionnels en genetique post et prenatale : cytogenetique classique et genetique moleculaire des microdeletions ; recherche de disomie uniparentale (dup) dans la region critique des syndromes de prader-willi et d'angelman (15q11-q13) (doctorat : biologie et sciences de la sante)“. Rennes 1, 1999. http://www.theses.fr/1999REN1B040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Villatoro, Gómez Sergio. „Estudio de variantes estructurales del genoma humano asociadas a trastornos del neurodesarrollo“. Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/400662.

Der volle Inhalt der Quelle
Annotation:
El síndrome de Angelman (SA) y el de Prader Wili (SPW) son trastornos del neurodesarrollo cuya principal etiología molecular es la deleción de la región 15q11.2-q13. Esta deleción está promovida por la Recombinación Homóloga No Alélica (NAHR) y mediada por secuencias altamente repetitivas de bajo número de copias (LCRs) que la flanquean. La orientación de estas LCRs predispone al reordenamiento final que se obtendrá por NAHR. Las LCRs en orientación directa generan deleciones y duplicaciones mientras las que presentan orientación invertida originan inversiones. Estas inversiones pueden facilitar una recombinación inadecuada entre las LCRs que flanquean la región 15q11.2-q13 dando lugar a la deleción en la descendencia. En este trabajo se presenta un nuevo análisis de la frecuencia de la inversión 15q11.2-q13 en 23 controles de población general, 21 progenitores de pacientes con SA y 32 con descendencia por SPW. Se han analizado un total de 9540 cromosomas informativos mediante FISH de sondas de BACs, encontrando la inversión en el 4,61% de los cromosomas estudiados en la población control. También se ha analizado la frecuencia de la inversión en progenitores de pacientes con SA y SPW observando un incremento significativo de inversiones en las madres de hijos con SA por deleción y en los padres de SPW por deleción frente a la población control (p=8x10-7 y p=0.007, respectivamente). Nuestros resultados indican que la inversión 15q11.2-q13 es un polimorfismo presente en población general. Así mismo, el incremento de la frecuencia de la inversión en madres de SA y padres de SPW con deleción sugiere que la inversión podría ser una estructura que promueve el mal alineamiento de los LCRs y facilita la generación de deleciones en 15q11.2-q13. El SA es diagnosticado molecularmente en el 90% de los pacientes, sin embargo, en el 10% restante, aún presentando unas características clínicas bien definidas, su etiología molecular es todavía una incógnita (SA-like). Se han analizado 20 pacientes SA-like mediante a-CGH previo cribado de variaciones en número de copias (CNVs) en regiones sindrómicas y subteloméricas. Las regiones variables en número de copia con una frecuencia poblacional inferior al 5% o que no se encuentran estudiadas según la Database of Genomic Variants se han seleccionado para ser confirmadas mediante Multiplex Ligation-depenent Probe Amplificatio (MLPA). Se han evaluado las CNVs en 20 pacientes SA-like y sus progenitores y se ha ampliado el estudio para cribar pacientes con discapacidad intelectual (n=296), trastornos del espectro autista (n=164) y controles de población general española (n=453). Se ha identificado una deleción de novo (1q44), dos duplicaciones heredadas de la madre (Xp11.23 y Xq28) y 20 regiones heredadas con CNVs en los pacientes SA-like pero que no se observan en la población control. En tres pacientes la concomitancia de una deleción y un SNP puede estar originando una discapacidad intelectual de herencia recesiva, sugiriendo que el gen MYH13 y los ARNs no codificantes largos podrían estar involucrados en el fenotipo SA-like. En lo referente a los pacientes con discapacidad intelectual y trastornos del espectro autista se han identificado alteraciones de gran tamaño implicadas en la etiología: del(1)(p36), del(1)(q44), dup(10)(q21.1), dup(X)(q11.23q28) y dup(X)(q28) en tres casos. También se han detectado 29 regiones con CNVs heredadas que no son variables en población general, 12 de las cuales son compartidas con los pacientes SA-like. Nuestros resultados respaldan la idea de que regiones con CNVs pueden ser, probablemente, responsables de un alto porcentaje de trastornos del neurodesarrollo. Las CNVs identificadas en pacientes, pero no detectadas en población control, aún siendo heredadas, podrían estar asociadas a algunas características clínicas de la enfermedad desenmascarando, en genes específicos, mutaciones de carácter recesivo relacionados con los fenotipos.
Angelman syndrome (AS) and Prader Willi syndrome (PWS) are neurodevelomental disorders in which main molecular etiology is the 15q11.2-q13 deletion. This deletion is leaded by Non Allelic Homologous Recombination (NAHR) mediated by flanking high repetitive sequences named Low Copy Repeats (LCRs). The orientation of these LCRs leads the final product of NAHR. LCRs in direct orientation are solved in deletions or duplications while LCRs in inverted orientation lead inversions. These inversions could facilitate abnormal recombination between flanking LCRs and could mediate interstitial deletion of chromosome 15q11.2-q13 in the offspring. Herein we report a new analysis of the frequency of inversion 15q11.2-q13 in 23 controls from general population, 21 AS parents and 32 PWS parents. Molecular cytogenetic analysis was performed using FISH with BACs probes by examining a total of 9540 informative chromosomes. First, the 15q11.2-q13 inversion was detected on average in 4.61% of chromosomes of Spanish control population. Then we analyzed the frequency of the 15q11.2-q13 inversion in parents of AS and PWS and a significant increase in AS mothers and PWS fathers with offspring affected by deletion was observed in front of control group (p= 8x10-7and p=0,007, respectively). Our results indicate that 15q11.2-q13 inversion is a polymorphism presents in general population. Moreover, the high inversion frequency observed in AS mothers and PWS fathers of offspring affected by deletion suggest that the inversion could be a structure that promotes misalignment between the LCRs and facilitates the occurrence of 15q11.2-q13 deletions. AS has a recognizable molecular cause in about 90% of cases, nevertheless in 10% with well-defined clinical features the molecular etiology is still unknown (AS-like). We have analysed 20 AS-like patients by a-CGH after screening the patients for syndromic and subtelomeric copy number alterations (CNVs). Regions that contained rare CNVs or not reported in the Database of Genomic Variants were selected for validation using custom Multiplex Ligation-dependent Probe Amplification (MLPA) assays. We assessed the CNV status in the 20 AS-like cases and in their parents, and also expanded the study to larger sets of samples of individuals suffering idiopathic intellectual disability (n=296), autism spectrum disorders (n=164) as well as to a control cohort of normal individuals (n=453). We have identified one de novo deletion (1q44), two maternally inherited duplications (Xp11.23 and Xq28) and 20 inherited altered regions present in AS-like cases that have not been present in control population. In three patients a concomitance of a deletion and SNPs is leading a possible recessive intellectual disability disease suggesting that MYH13 and long non-coding RNAs could be involved in AS-like. Concerning intellectual disability and autism spectrum disorders big alterations: del(1)(p36), del(1)(q44), dup(10)(q21.1), dup(X)(q11.23q28) and dup(X)(q28) in three patients, have been associated with the etiology. We also have identified 29 inherited genomic variants that were not present in the general population, 12 out of them shared with AS-like patients. Our results support the point of view that a considerable proportion of genomic regions showing variability in copy number could be responsible for neurodevelopment disorders. The inherited CNVs identified in cases, but not detected in controls, suggesting that even if they are inherited, they could be responsible for some of the clinical features perhaps unmasking, in specific genes, recessive mutations involved in the phenotypes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Locke, Devin Paul. „SEGMENTAL DUPLICATIONS PROMOTE GENOMIC INSTABILITY IN HUMAN CHROMOSOME 15q11-q13“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=case1088114861.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Adams, Dawn M. „Laughing and smiling in angelman syndrome“. Thesis, University of Southampton, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

MALZAC, PERRINE. „Le syndrome d'angelman : etude clinique, cytogenetique et moleculaire“. Aix-Marseille 2, 1992. http://www.theses.fr/1992AIX20909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Angelman Syndromes"

1

Group, Angelman Syndrome Support. What is Angelman Syndrome?. Waterlooville, Hants: Angelman Syndrome Support Group, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hyman, Julie. Angelman Syndrome A to Z: Everything you ever wanted to know about Angelman Syndrome ... and then some! 2. Aufl. Westmont, Ill: Angelman Syndrome Foundation, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Clayton-Smith, Jill. A clinical and genetic study of Angelman syndrome. Manchester: University of Manchester, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Parker, James N., und Philip M. Parker. Angelman syndrome: A bibliography and dictionary for physicians, patients, and genome researchers [to internet references]. San Diego, CA: ICON Health Publications, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Publications, ICON Health. Angelman Syndrome - A Medical Dictionary, Bibliography, and Annotated Research Guide to Internet References. ICON Health Publications, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

McKinlay Gardner, R. J., und David J. Amor. Uniparental Disomy and Disorders of Imprinting. Herausgegeben von R. J. McKinlay Gardner und David J. Amor. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199329007.003.0018.

Der volle Inhalt der Quelle
Annotation:
Uniparental disomy (UPD) is a fascinating pathogenetic mechanism, albeit that it is applicable to a small but important number of conditions. This chapter discusses the basis of UPD and the different mechanisms by which it may arise. It reviews the concept of epigenetics in this setting. This chapter considers UPD as it may have been observed in all the chromosomes, in some of which it appears to be without any effect, and others in which a UPD effect is well known, including the classic UPD conditions, of which Prader-Willi and Angelman syndromes are the archetypes. The differing reproductive risks in these different syndromes are noted.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Barañano, Kristin W. Angelman Syndrome. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0055.

Der volle Inhalt der Quelle
Annotation:
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by maternal deficiency of the epigenetically imprinted gene UBE3A. It is characterized by severe developmental delay, an ataxic gait disorder, an apparent happy demeanor with frequent smiling or laughing, and severe expressive language impairments. Understanding the neurobiology of AS has focused on understanding how UBE3A is regulated by neuronal activity, as well as the targets of its ubiquitin E3 ligase activity. This has led to a model of the role of UBE3A in the regulation of experience-dependent sculpting of synaptic circuits. At this time, treatment is largely supportive, but efforts directed toward reversing the epigenetic silencing machinery may lead to improved synaptic function in AS patients.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weeber, Edwin J. Angelman Syndrome. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0013.

Der volle Inhalt der Quelle
Annotation:
Angelman syndrome (AS) is a devastating neurological disorder with a symptom complex that includes but is not limited to severe developmental delay, profound cognitive disruption, motor coordination defects, increased propensity for seizure with a characteristic abnormal electroencephalogram, sleep disruption, behavioral difficulties, a lack of speech, and an overall happy demeanor. Although the disorder was first described in 1965 by British pediatrician Dr. Harry Angelman, because AS is clinically characterized by a wide constellation of symptoms with varying degrees of severity, it is not readily diagnosed by clinical presentation alone and misdiagnosis has commonly occurred.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dan, Bernard. Angelman's Syndrome. MacKeith Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

N. Calculator, Stephen, Hrsg. Angelman Syndrome: Communication, Educational and Related Considerations. BENTHAM SCIENCE PUBLISHERS, 2015. http://dx.doi.org/10.2174/97816810811681150101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Angelman Syndromes"

1

Williams, Charles A., und Aditi Dagli. „Angelman Syndrome“. In Management of Genetic Syndromes, 69–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470893159.ch6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

DiLullo, Nicholas M., und Abha R. Gupta. „Angelman/Prader-Willi Syndromes“. In Encyclopedia of Autism Spectrum Disorders, 157–60. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_1316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

DiLullo, Nicholas M., und Abha R. Gupta. „Angelman/Prader-Willi Syndromes“. In Encyclopedia of Autism Spectrum Disorders, 202–5. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_1316.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Butler, Merlin G. „Prader-Willi and Angelman Syndromes“. In Neuroscience in the 21st Century, 2359–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1997-6_88.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nicholls, Robert D. „Prader-Willi and Angelman Syndromes“. In Principles of Molecular Medicine, 1053–61. Totowa, NJ: Humana Press, 1998. http://dx.doi.org/10.1007/978-1-59259-726-0_117.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Magenis, R. Ellen, und SuEllen Toth-Fejel. „Cytogenetic Comparison between Prader-Willi and Angelman Syndromes“. In Prader-Willi Syndrome, 59–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84283-2_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gurrieri, Fiorella, und Maria Accadia. „Genetic Imprinting: The Paradigm of Prader-Willi and Angelman Syndromes“. In Endocrine Involvement in Developmental Syndromes, 20–28. Basel: KARGER, 2009. http://dx.doi.org/10.1159/000207473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Donion, Timothy A. „Current Understanding and Recurrence Risks of Prader-Willi and Angelman Syndromes“. In Prader-Willi Syndrome, 255–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84283-2_29.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nelson, Samantha M., und Maria G. Valdovinos. „Angelman Syndrome“. In Encyclopedia of Child Behavior and Development, 96–101. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_136.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Morris, Richard J., und Yvonne P. Morris. „Angelman syndrome.“ In Health-related disorders in children and adolescents: A guidebook for understanding and educating., 50–55. Washington: American Psychological Association, 1998. http://dx.doi.org/10.1037/10300-007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Angelman Syndromes"

1

FILHO, F. T. M., F. D. P. SOUZA und I. B. S. FILHO. „NDD. 08. Angelman syndrome: a bibliographic review“. In I International Symposium in Neuroscience Meeting. Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/isnm-sine32.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Meng, Linyan, Amanda J. Ward, C. Frank Bennett, Arthur Beaudet und Frank Rigo. „Abstract IA28: Towards a therapy for Angelman syndrome by targeting a long noncoding RNA to active UBE3A“. In Abstracts: AACR Special Conference on Noncoding RNAs and Cancer: Mechanisms to Medicines; December 4-7, 2015; Boston, MA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.nonrna15-ia28.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie