Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Angelman Syndromes.

Zeitschriftenartikel zum Thema „Angelman Syndromes“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Angelman Syndromes" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Salminen, Iiro Ilmari, Bernard J. Crespi und Mikael Mokkonen. „Baby food and bedtime: Evidence for opposite phenotypes from different genetic and epigenetic alterations in Prader-Willi and Angelman syndromes“. SAGE Open Medicine 7 (Januar 2019): 205031211882358. http://dx.doi.org/10.1177/2050312118823585.

Der volle Inhalt der Quelle
Annotation:
Prader–Willi and Angelman syndromes are often referred to as a sister pair of neurodevelopmental disorders, resulting from different genetic and epigenetic alterations to the same chromosomal region, 15q11-q13. Some of the primary phenotypes of the two syndromes have been suggested to be opposite to one another, but this hypothesis has yet to be tested comprehensively, and it remains unclear how opposite effects could be produced by changes to different genes in one syndrome compared to the other. We evaluated the evidence for opposite effects on sleep and eating phenotypes in Prader–Willi syndrome and Angelman syndrome, and developed physiological–genetic models that represent hypothesized causes of these differences. Sleep latency shows opposite deviations from controls in Prader–Willi and Angelman syndromes, with shorter latency in Prader–Willi syndrome by meta-analysis and longer latency in Angelman syndrome from previous studies. These differences can be accounted for by the effects of variable gene dosages of UBE3A and MAGEL2, interacting with clock genes, and leading to acceleration (in Prader–Willi syndrome) or deceleration (in Angelman syndrome) of circadian rhythms. Prader–Willi and Angelman syndromes also show evidence of opposite alterations in hyperphagic food selectivity, with more paternally biased subtypes of Angelman syndrome apparently involving increased preference for complementary foods (“baby foods”); hedonic reward from eating may also be increased in Angelman syndrome and decreased in Prader–Willi syndrome. These differences can be explained in part under a model whereby hyperphagia and food selectivity are mediated by the effects of the genes SNORD-116, UBE3A and MAGEL2, with outcomes depending upon the genotypic cause of Angelman syndrome. The diametric variation observed in sleep and eating phenotypes in Prader–Willi and Angelman syndromes is consistent with predictions from the kinship theory of imprinting, reflecting extremes of higher resource demand in Angelman syndrome and lower demand in Prader–Willi syndrome, with a special emphasis on social–attentional demands and attachment associated with bedtime, and feeding demands associated with mother-provided complementary foods compared to offspring-foraged family-type foods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Panov, Julia, und Hanoch Kaphzan. „Angelman Syndrome and Angelman-like Syndromes Share the Same Calcium-Related Gene Signatures“. International Journal of Molecular Sciences 22, Nr. 18 (13.09.2021): 9870. http://dx.doi.org/10.3390/ijms22189870.

Der volle Inhalt der Quelle
Annotation:
Angelman-like syndromes are a group of neurodevelopmental disorders that entail clinical presentation similar to Angelman Syndrome (AS). In our previous study, we showed that calcium signaling is disrupted in AS, and we identified calcium-target and calcium-regulating gene signatures that are able to differentiate between AS and their controls in different models. In the herein study, we evaluated these sets of calcium-target and calcium-regulating genes as signatures of AS-like and non-AS-like syndromes. We collected a number of RNA-seq datasets of various AS-like and non-AS-like syndromes and performed Principle Component Analysis (PCA) separately on the two sets of signature genes to visualize the distribution of samples on the PC1–PC2 plane. In addition to the evaluation of calcium signature genes, we performed differential gene expression analyses to identify calcium-related genes dysregulated in each of the studied syndromes. These analyses showed that the calcium-target and calcium-regulating signatures differentiate well between AS-like syndromes and their controls. However, in spite of the fact that many of the non-AS-like syndromes have multiple differentially expressed calcium-related genes, the calcium signatures were not efficient classifiers for non-AS-like neurodevelopmental disorders. These results show that features based on clinical presentation are reflected in signatures derived from bioinformatics analyses and suggest the use of bioinformatics as a tool for classification.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Luk, Ho-Ming. „Angelman-Like Syndrome: A Genetic Approach to Diagnosis with Illustrative Cases“. Case Reports in Genetics 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/9790169.

Der volle Inhalt der Quelle
Annotation:
Epigenetic abnormalities in 15q11-13 imprinted region andUBE3Amutation are the two major mechanisms for molecularly confirmed Angelman Syndrome. However, there is 10% of clinically diagnosed Angelman Syndrome remaining test negative. With the advancement of genomic technology like array comparative genomic hybridization and next generation sequencing methods, it is found that some patients of these test negative Angelman-like Syndromes actually have alternative diagnoses. Accurate molecular diagnosis is paramount for genetic counseling and subsequent management. Despite overlapping phenotypes between Angelman and Angelman-like Syndrome, there are some subtle but distinct features which could differentiate them clinically. It would provide important clue during the diagnostic process for clinicians.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fryer, Alan. „Angelman and Prader-Willi syndromes“. Current Paediatrics 7, Nr. 4 (Dezember 1997): 242–45. http://dx.doi.org/10.1016/s0957-5839(97)80143-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Melvyn W. B., Nikki Fong, Ying Hui Quek, Cyrus S. H. Ho, Beng Yeong Ng und Roger C. M. Ho. „Microdeletion syndromes and psychiatry: An update“. BJPsych Advances 23, Nr. 3 (Mai 2017): 149–57. http://dx.doi.org/10.1192/apt.bp.114.012864.

Der volle Inhalt der Quelle
Annotation:
SummaryMicrodeletion syndrome is an important topic in intellectual disability, associated with various psychiatric symptoms, such as autism, attention deficit, hyperactivity, obsession and compulsion, and psychosis. In this article, we provide a clinical update on the following syndromes and their associated psychiatric disorders: Prader–Willi syndrome, Angelman syndrome, Williams syndrome, Wolf–Hirschhorn syndrome, cri du chat syndrome, DiGeorge syndrome and Rubinstein–Taybi syndrome.Learning Objectives• Gain an up-to-date understanding of the microdeletion syndromes commonly seen in daily practice• Appreciate the association between underlying chromosomal abnormalities and the resultant intellectual disabilities in microdeletion syndromes• Gain up-to-date knowledge about the treatment options for the various microdeletion syndromes commonly seen in daily practice
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cesaityte, Karina, und Danielius Serapinas. „The spectrum of microdeletian syndromes at the hospital of Lithuanian university of health sciences“. Genetika 48, Nr. 3 (2016): 859–66. http://dx.doi.org/10.2298/gensr1603859c.

Der volle Inhalt der Quelle
Annotation:
Microdeletion syndrome is a rare condition which can be diagnosed by fluorescent in situ hybridization (FISH) method. We analyzed microdeletion syndromes cases during ten years period (2005-2015) at The Hospital of Lithuanian University of Health Sciences. We report 2 patients with Prader-Willi syndrome, 2 patients with Smith-Magenis syndrome, 1 patient with Angelman syndrome and 1 patient with Cri du Chat syndrome. All syndromes were confirmed by FISH. These cases contain mainly data about phenotype abnormalities and clinical symptoms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tan, Wen-Hann, Lynne M. Bird, Ronald L. Thibert und Charles A. Williams. „If not Angelman, what is it? a review of Angelman-like syndromes“. American Journal of Medical Genetics Part A 164, Nr. 4 (29.01.2014): 975–92. http://dx.doi.org/10.1002/ajmg.a.36416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Camprubí, Cristina, Maria Dolors Coll, Elisabeth Gabau und Míriam Guitart. „Prader–Willi and Angelman syndromes: genetic counseling“. European Journal of Human Genetics 18, Nr. 2 (07.10.2009): 154–55. http://dx.doi.org/10.1038/ejhg.2009.170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jiang, Yong-hui, Ting-Fen Tsai, Jan Bressler und Arthur L. Beaudet. „Imprinting in Angelman and Prader-Willi syndromes“. Current Opinion in Genetics & Development 8, Nr. 3 (Juni 1998): 334–42. http://dx.doi.org/10.1016/s0959-437x(98)80091-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nicholls, Robert D., Shinji Saitoh und Bernhard Horsthemke. „Imprinting in Prader–Willi and Angelman syndromes“. Trends in Genetics 14, Nr. 5 (Mai 1998): 194–200. http://dx.doi.org/10.1016/s0168-9525(98)01432-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Schad, Chris R., Syed M. Jalal und Stephen N. Thibodeau. „Genetic Testing for Prader-Willi and Angelman Syndromes“. Mayo Clinic Proceedings 70, Nr. 12 (Dezember 1995): 1195–96. http://dx.doi.org/10.4065/70.12.1195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Kalsner, Louisa, und Stormy J. Chamberlain. „Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes“. Pediatric Clinics of North America 62, Nr. 3 (Juni 2015): 587–606. http://dx.doi.org/10.1016/j.pcl.2015.03.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Cassidy, Suzanne B., Elisabeth Dykens und Charles A. Williams. „Prader-Willi and Angelman syndromes: Sister imprinted disorders“. American Journal of Medical Genetics 97, Nr. 2 (2000): 136–46. http://dx.doi.org/10.1002/1096-8628(200022)97:2<136::aid-ajmg5>3.0.co;2-v.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hultén, Maj, Graham Hardy, Clive Gould, Roi Stergianou, Jonathan Waters und Carole Mckeown. „Molecular cytogenetics of Prader-Willi and Angelman syndromes“. Lancet 339, Nr. 8787 (Januar 1992): 243–44. http://dx.doi.org/10.1016/0140-6736(92)90043-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Butler, MerlinG, und MarkA Greenstein. „Molecular cytogenetics of Prader-Willi and Angelman syndromes“. Lancet 338, Nr. 8777 (November 1991): 1276. http://dx.doi.org/10.1016/0140-6736(91)92145-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Moss, Joanna, Lisa Nelson, Laurie Powis, Jane Waite, Caroline Richards und Chris Oliver. „A Comparative Study of Sociability in Angelman, Cornelia de Lange, Fragile X, Down and Rubinstein Taybi Syndromes and Autism Spectrum Disorder“. American Journal on Intellectual and Developmental Disabilities 121, Nr. 6 (01.11.2016): 465–86. http://dx.doi.org/10.1352/1944-7558-121.6.465.

Der volle Inhalt der Quelle
Annotation:
Abstract Few comparative studies have evaluated the heterogeneity of sociability across a range of neurodevelopmental disorders. The Sociability Questionnaire for People with Intellectual Disability (SQID) was completed by caregivers of individuals with Cornelia de Lange (n = 98), Angelman (n = 66), Fragile X (n = 142), Down (n = 117) and Rubinstein Taybi (n = 88) syndromes and autism spectrum disorder (ASD; n = 107). Between groups and age-band (&lt;12yrs; 12–18yrs; &gt;18yrs) comparisons of SQID scores were conducted. Rates of behaviors indicative of selective mutism were also examined. Fragile X syndrome achieved the lowest SQID scores. Cornelia de Lange, ASD, and Fragile X groups scored significantly lower than Angelman, Down and Rubinstein Taybi groups. Selective mutism characteristics were highest in Cornelia de Lange (40%) followed by Fragile X (17.8%) and ASD (18.2%). Age-band differences were identified in Cornelia de Lange and Down syndrome.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Prows, Cynthia A., und Robert J. Hopkin. „Prader Willi and Angelman Syndromes: Exemplars of Genomic Imprinting“. Journal of Perinatal & Neonatal Nursing 13, Nr. 2 (September 1999): 76–89. http://dx.doi.org/10.1097/00005237-199909000-00007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Smith, Arabella, Tina Buchholz und Lisa Robson. „Diagnostic Testing for Prader-Willi and Angelman Syndromes: Response“. American Journal of Human Genetics 61, Nr. 1 (Juli 1997): 241–44. http://dx.doi.org/10.1016/s0002-9297(07)64300-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Smith, Arabella, Tina Buchholz und Lisa Robson. „Diagnostic Testing for Prader‐Willi and Angelman Syndromes: Response“. American Journal of Human Genetics 61, Nr. 1 (Juli 1997): 241–44. http://dx.doi.org/10.1086/516855.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Cassidy, Suzanne B., und Stuart Schwartz. „Prader-Willi and Angelman Syndromes: Disorders of Genomic Imprinting“. Medicine 77, Nr. 2 (März 1998): 140–51. http://dx.doi.org/10.1097/00005792-199803000-00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Dittrich, Bärbel, Karin Buiting und Bernhard Horsthemke. „PW71 methylation test for Prader-Willi and angelman syndromes“. American Journal of Medical Genetics 61, Nr. 2 (11.01.1996): 196–97. http://dx.doi.org/10.1002/ajmg.1320610206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mann, M. R. W. „Towards a molecular understandingof Prader-Willi and Angelman syndromes“. Human Molecular Genetics 8, Nr. 10 (01.09.1999): 1867–73. http://dx.doi.org/10.1093/hmg/8.10.1867.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Alfehaid, Suha, Osama Al Madani, Magdy Karoshah, Manal Bamousa und Madadin Mohammed. „A suspicious case of mosaic Prader–Willi and Angelman syndromes“. Egyptian Journal of Forensic Sciences 3, Nr. 4 (Dezember 2013): 127–33. http://dx.doi.org/10.1016/j.ejfs.2013.07.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wong, D., S. M. Johnson, D. Young, L. Iwamoto, S. Sood und T. P. Slavin. „Expanding the BP1-BP2 15q11.2 Microdeletion Phenotype: Tracheoesophageal Fistula and Congenital Cataracts“. Case Reports in Genetics 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/801094.

Der volle Inhalt der Quelle
Annotation:
The proximal q arm of chromosome 15 contains breakpoint regions BP1–BP5 with the classic deletion of BP1–BP3 best known to be associated with Prader-Willi and Angelman syndromes. The region is approximately 500 kb and microdeletions within the BP1-BP2 region have been reported in patients with developmental delay, behavioral abnormalities, and motor apraxia as well as dysmorphic features including hypertelorism, cleft or narrow palate, ear abnormalities, and recurrent upper airway infections. We report two patients with unique, never-before-reported 15q11.2 BP1-2 microdeletion syndrome findings, one with proximal esophageal atresia and distal tracheoesophageal fistula (type C) and one with congenital cataracts. Cataracts have been described in Prader-Willi syndrome but we could not find any description of cataracts in Angelman syndrome. Esophageal atresia and tracheoesophageal fistula have not been reported to our knowledge in either syndrome. A chance exists that both cases are sporadic birth defects; however, the findings of the concomitant microdeletion cannot be overlooked as a possible cause. Based on our review of the literature and the presentation of our patients, we recommend that esophageal atresia and distal tracheoesophageal fistula as well as congenital cataracts be included in the phenotypic spectrum of 15q11.2 BP1-2 microdeletion syndrome.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gambardella, Stefano, Erika Ciabattoni, Francesca Motta, Giusy Stoico, Francesca Gullotta, Michela Biancolella, Anna Maria Nardone et al. „Design, Construction and Validation of Targeted BAC Array-Based CGH Test for Detecting the Most Commons Chromosomal Abnormalities“. Genomics Insights 3 (Januar 2010): GEI.S3683. http://dx.doi.org/10.4137/gei.s3683.

Der volle Inhalt der Quelle
Annotation:
We designed a targeted-array called GOLD (Gain or Loss Detection) Chip consisting of 900 FISH-mapped non-overlapping BAC clones spanning the whole genome to enhance the coverage of 66 unique human genomic regions involved in well known microdeletion/microduplication syndromes. The array has a 10 Mb backbone to guarantee the detection of the aneuploidies, and has an implemented resolution for telomeres, and for regions involved in common genomic diseases. In order to evaluate clinical diagnostic applicability of GOLDChip, analytical validity was carried-out via retrospective analysis of DNA isolated from a series of cytogenetically normal amniocytes and cytogenetically abnormal DNA obtained from cultured amniocytes, peripheral blood and/or cell lines. We recruited 47 DNA samples corresponding to pathologies with significant frequencies (Cri du Chat syndrome, Williams syndrome, Prader Willi/Angelman syndromes, Smith-Magenis syndrome, DiGeorge syndrome, Miller-Dieker syndrome, chromosomes 13, 18 and 21 trisomies). We set up an experimental protocol that allowed to identify chromosomal rearrangements in all the DNA samples analyzed. Our results provide evidence that our targeted BAC array can be used for the identification of the most common microdeletion syndromes and common aneuploidies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

CHOY, KWONG WAI, PO TING TSANG, TAK YEUNG LEUNG, CHI CHIU WANG und TZE KIN LAU. „THE APPLICATION OF MICROARRAY BASED COMPARATIVE GENOMIC HYBRIDIZATION IN PRENATAL DIAGNOSIS“. Fetal and Maternal Medicine Review 19, Nr. 2 (Mai 2008): 119–33. http://dx.doi.org/10.1017/s0965539508002167.

Der volle Inhalt der Quelle
Annotation:
Microscopic forms of karyotyping and cytogenetic analysis by means of G-banded chromosome analysis and rapid FISH (fluorescencein situhybridization) on amniotic fluids or chorionic villus samples are at present regarded as the gold standard for prenatal diagnosis of chromosomal anomalies. Nevertheless, up to now the resolution of conventional chromosomal analysis was limited to approximately 4–5 Mb and not smaller than 2 Mb for FISH. Thus numerous common microdeletion syndromes are not detectable by conventional karyotyping. In addition, prenatal cells yield lower band resolution by conventional karyotyping than peripheral white blood cells making detection of subtle abnormalities even more difficult. With the advances in molecular-based techniques, a collaborative effort has led to the standardized method for detection of a restricted set of common chromosomal aneuploidies and microdeletion syndromes such as Down's syndrome, DiGeorge or Angelman syndrome either by rapid FISH and/or quantitative fluorescent PCR (QF-PCR). Even if the presence of particular phenotypic features of microdeletion or duplication syndromes may direct the use of syndrome-specific FISH tests in the postnatal period, syndrome-specific FISH analysis still has a very limited potential and application in the prenatal period due to the limitation in prenatal morphological or imaging diagnosis of many of the syndromes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Butler, Merlin G. „Magnesium Supplement and the 15q11.2 BP1–BP2 Microdeletion (Burnside–Butler) Syndrome: A Potential Treatment?“ International Journal of Molecular Sciences 20, Nr. 12 (14.06.2019): 2914. http://dx.doi.org/10.3390/ijms20122914.

Der volle Inhalt der Quelle
Annotation:
The 15q11.2 BP1–BP2 microdeletion (Burnside–Butler) syndrome is an emerging disorder that encompasses four genes (NIPA1, NIPA2, CYFIP1, and TUBGCP5). When disturbed, these four genes can lead to cognitive impairment, language and/or motor delay, psychiatric/behavioral problems (attention-deficit hyperactivity, autism, dyslexia, schizophrenia/paranoid psychosis), ataxia, seizures, poor coordination, congenital anomalies, and abnormal brain imaging. This microdeletion was reported as the most common cytogenetic finding when using ultra-high- resolution chromosomal microarrays in patients presenting for genetic services due to autism with or without additional clinical features. Additionally, those individuals with Prader–Willi or Angelman syndromes having the larger typical 15q11–q13 type I deletion which includes the 15q11.2 BP1–BP2 region containing the four genes, show higher clinical severity than those having the smaller 15q11–q13 deletion where these four genes are intact. Two of the four genes (i.e., NIPA1 and NIPA2) are expressed in the brain and encode magnesium transporters. Magnesium is required in over 300 enzyme systems that are critical for multiple cellular functions, energy expenditure, protein synthesis, DNA transcription, and muscle and nerve function. Low levels of magnesium are found in those with seizures, depression, and acute or chronic brain diseases. Anecdotally, parents have administered magnesium supplements to their children with the 15q11.2 BP1–BP2 microdeletion and have observed improvement in behavior and clinical presentation. These observations require more attention from the medical community and should include controlled studies to determine if magnesium supplements could be a treatment option for this microdeletion syndrome and also for a subset of individuals with Prader–Willi and Angelman syndromes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Kosaki, Rika, Ohsuke Migita, Takao Takahashi und Kenjiro Kosaki. „Two distinctive classic genetic syndromes, 22q11.2 deletion syndrome and Angelman syndrome, occurring within the same family“. American Journal of Medical Genetics Part A 149A, Nr. 4 (13.03.2009): 702–5. http://dx.doi.org/10.1002/ajmg.a.32666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Õiglane-Shlik, Eve, Tiina Talvik, Riina Žordania, Haide Põder, Tiina Kahre, Elve Raukas, Tiiu Ilus et al. „Prevalence of Angelman syndrome and Prader–Willi syndrome in Estonian children: Sister syndromes not equally represented“. American Journal of Medical Genetics Part A 140A, Nr. 18 (2006): 1936–43. http://dx.doi.org/10.1002/ajmg.a.31423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Jedele, Kerry Baldwin. „The Overlapping Spectrum of Rett and Angelman Syndromes: A Clinical Review“. Seminars in Pediatric Neurology 14, Nr. 3 (September 2007): 108–17. http://dx.doi.org/10.1016/j.spen.2007.07.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Morris-Rosendahl, Deborah J., und Eike Back. „The Human Genome: Detecting Chromosomal Deletions: Angelman and Prader-Willi Syndromes“. American Journal of Psychiatry 159, Nr. 3 (März 2002): 372. http://dx.doi.org/10.1176/appi.ajp.159.3.372.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wong, Melissa, Catherine R. Paschal und Xiuhua Bozarth. „Diagnosing Coexisting Conditions of Angelman and Klinefelter Syndromes Using Chromosomal Microarray“. Journal of Pediatric Neurology 17, Nr. 03 (07.02.2018): 118–22. http://dx.doi.org/10.1055/s-0038-1626699.

Der volle Inhalt der Quelle
Annotation:
AbstractWe report here a 4-year-old male patient who presented with clinical features of Angelman syndrome (AS, OMIM 105830) including dysmorphic features, hypotonia, lack of language development, ataxia, severe developmental delay, and seizures. Due to insurance denial for DNA methylation test, a chromosomal microarray (CMA) was performed, which showed an approximately 5.0 Mb deletion of Prader–Willi/AS critical region (15q11.2 to q13.1). Subsequent Prader–Willi/AS methylation analysis was consistent with the diagnosis of AS. Gain of an X chromosome (Klinefelter syndrome, KS) was also detected by CMA. KS is not usually diagnosed before puberty due to lack of specific clinical features in early childhood. It is unclear if there is any direct association between these two genetic disorders. There has only been one other published case, to our knowledge, of a patient with coexistence of AS due to 15q11.2-q13 deletion and KS. CMA is a fast and effective diagnostic test to determine multiple genetic disorders. Early genetic diagnostic testing using CMA as an alternative first-step diagnostic genetic testing for children with clinical suspicion of AS would be beneficial.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Nicholls, Robert D. „Imprinting mechanisms and genes involved in Prader-Willi and Angelman syndromes“. Seminars in Developmental Biology 5, Nr. 5 (Oktober 1994): 311–22. http://dx.doi.org/10.1006/sedb.1994.1040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Pulsifer, Margaret B. „The neuropsychology of mental retardation“. Journal of the International Neuropsychological Society 2, Nr. 2 (März 1996): 159–76. http://dx.doi.org/10.1017/s1355617700001016.

Der volle Inhalt der Quelle
Annotation:
AbstractThis critical review examines mental retardation (MR) from a neuropsychological perspective. Competing definitions of MR are discussed and the prevalence is estimated. Descriptions are given of idiopathic MR and the five major identifiable prenatal causes of MR: fetal alcohol syndrome, Down's syndrome, fragile X syndrome, Prader-Willi syndrome, and Angelman syndrome. Similarities and differences among syndromes are examined. Cognitive deficits common to all disorders were in attention, short-term memory, and sequential information processing, whereas language and visuospatial abilities were varied. Neuroanatomical abnormalities common to all disorders were in the hippocampus and cerebellum; individual disorders typically showed a unique pattern of other neurological abnormalities. Both knowledge of individual MR-related disorders and comparative research between disorders are important for researchers and clinicians. Further research is called for in both areas. (JINS, 1996, 2, 159–176.)
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Moss, Joanna, Patricia Howlin, Richard Patrick Hastings, Sarah Beaumont, Gemma M. Griffith, Jane Petty, Penny Tunnicliffe, Rachel Yates, Darrelle Villa und Chris Oliver. „Social Behavior and Characteristics of Autism Spectrum Disorder in Angelman, Cornelia de Lange, and Cri du Chat Syndromes“. American Journal on Intellectual and Developmental Disabilities 118, Nr. 4 (01.07.2013): 262–83. http://dx.doi.org/10.1352/1944-7558-118.4.262.

Der volle Inhalt der Quelle
Annotation:
Abstract We evaluated autism spectrum disorder (ASD) characteristics and social behavior in Angelman (AS; n = 19; mean age = 10.35 years), Cornelia de Lange (CdLS; n = 15; mean age = 12.40 years), and Cri du Chat (CdCS, also known as 5 p-syndrome; n = 19; mean age = 8.80 years) syndromes. The proportion of individuals meeting the ASD cutoff on the Social Communication Questionnaire was significantly higher in the AS and CdLS groups than in the CdCS group (p &lt; .01). The groups demonstrated divergent social behavior profiles during social conditions in which adult availability, adult familiarity, and social demand were manipulated. Social enjoyment was significantly heightened in AS, whereas social approaches were heightened in individuals with CdCS. Social motivation, social communication, and enjoyment were significantly lower in CdLS. The findings highlight the importance of detailed observation when evaluating ASD and social behavior in genetic syndromes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Buha, Natasa, Milica Gligorovic und Jasmina Maksic. „Challenging behavior: Behavioral phenotypes of some genetic syndromes“. Srpski arhiv za celokupno lekarstvo 142, Nr. 9-10 (2014): 621–27. http://dx.doi.org/10.2298/sarh1410621b.

Der volle Inhalt der Quelle
Annotation:
Challenging behavior in individuals with mental retardation (MR) is relatively frequent, and represents a significant obstacle to adaptive skills. The frequency of specific forms and manifestations of challenging behavior can depend on a variety of personal and environmental factors. There are several prominent theoretical models regarding the etiology of challenging behavior and psychopathology in persons with MR: behavioral, developmental, socio-cultural and biological. The biological model emphasizes the physiological, biochemical and genetic factors as the potential source of challenging behavior. The progress in the field of genetics and neuroscience has opened the opportunity to study and discover the neurobiological basis of phenotypic characteristics. Genetic syndromes associated with MR can be followed by a specific set of problems and disorders which constitutes their behavioral phenotype. The aim of this paper was to present challenging behaviors that manifest in the most frequently studied syndromes: Down syndrome, Fragile X syndrome, Williams syndrome, Prader-Willi syndrome and Angelman syndrome. The concept of behavioral phenotype implies a higher probability of manifesting specific developmental characteristics and specific behaviors in individuals with a certain genetic syndrome. Although the specific set of (possible) problems and disorders is distinctive for the described genetic syndromes, the connection between genetics and behavior should be viewed through probabilistic dimension. The probabilistic concept takes into consideration the possibility of intra-syndrome variability in the occurrence, intensity and time onset of behavioral characteristics, at which the higher variability the lower is the specificity of the genetic syndrome. Identifying the specific pattern of behavior can be most important for the process of early diagnosis and prognosis. In addition, having knowledge about behavioral phenotype can be a landmark in the creation of targeted treatment strategies for individuals with a specific genetic syndrome.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Veiga, Marielza Fernández, und Maria Betânia Pereira Toralles. „Neurological manifestation and genetic diagnosis of Angelman, Rett and Fragile-X syndromes“. Jornal de Pediatria 78, Nr. 7 (15.07.2002): 55–62. http://dx.doi.org/10.2223/jped.851.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cecconi, A., D. J. Halley, A. Salvi, C. Balestrieri, E. Lapi, S. Lenzi, U. Ricci und M. L. Giovannucci Uzielli. „Phenotype-Karyotype-Genotype Correlations in Prader-Willi and Angelman Syndromes: Preliminary Results“. Acta geneticae medicae et gemellologiae: twin research 45, Nr. 1-2 (April 1996): 227–31. http://dx.doi.org/10.1017/s0001566000001355.

Der volle Inhalt der Quelle
Annotation:
Prader-Willi Syndrome (PWS) and Angelman Syndrome (AS) are well established as models of Genomic Imprinting in humans, since completely different phenotypes are generated by the absence of paternal (PWS) or maternal (AS) contribution to the q11-13 region of chromosome 15 as a result of deletion or uniparental disomy. We report a preliminary study based on our experience of more than 20 years of research into the genetics of PWS and AS syndromes.Thirty nine subjects, referred from a number of Centers and Medical Doctors have been examined to either confirm or rule out a diagnosis of PWS or AS.Patients were evaluated through the Clinical Genetics and Dysmorphology Program at the Human Genetics Center, Dept. of Paediatrics, University of Florence.Clinical evaluation showed that 10 of these patients fulfilled diagnostic criteria for PWS and 8 for AS.All patients were isolated cases and the 18 nuclear families were unrelated.We adopted the staged diagnostic approach for all our families diagnosed PWS or AS families, moleucular using cytogenetic, genetic and molecular cytogenetic techniques.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Nicholls, Robert D. „Genomic imprinting and candidate genes in the Prader—Willi and Angelman syndromes“. Current Opinion in Genetics & Development 3, Nr. 5 (Oktober 1993): 802. http://dx.doi.org/10.1016/s0959-437x(05)80101-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Khan, Naheed L., und Nicholas W. Wood. „Prader-Willi and Angelman syndromes: update on genetic mechanisms and diagnostic complexities“. Current Opinion in Neurology 12, Nr. 2 (April 1999): 149–54. http://dx.doi.org/10.1097/00019052-199904000-00004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kelsey, Gavin, und Wolf Reik. „Imprint switch mechanism indicated by mutations in prader-willi and angelman syndromes“. BioEssays 19, Nr. 5 (Mai 1997): 361–65. http://dx.doi.org/10.1002/bies.950190502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wenger, Sharon L., und James H. Cummins. „Fluorescent in situ hybridization for evaluation of prader-willi and angelman syndromes“. American Journal of Medical Genetics 57, Nr. 4 (Juli 1995): 639. http://dx.doi.org/10.1002/ajmg.1320570426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Teshima, I., D. Chadwick, D. Chitayat, J. Kobayashi, P. Ray, C. Shuman, J. Siegel-Bartelt, P. Strasberg und R. Weksberg. „FISH detection of chromosome 15 deletions in Prader-Willi and Angelman syndromes“. American Journal of Medical Genetics 62, Nr. 3 (29.03.1996): 216–23. http://dx.doi.org/10.1002/(sici)1096-8628(19960329)62:3<216::aid-ajmg3>3.0.co;2-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Wenger, Sharon L., Susan L. Sell, Michael J. Painter und Mark W. Steele. „Inherited unbalanced subtelomeric translocation in a child with 8p- and Angelman syndromes“. American Journal of Medical Genetics 70, Nr. 2 (16.05.1997): 150–54. http://dx.doi.org/10.1002/(sici)1096-8628(19970516)70:2<150::aid-ajmg9>3.0.co;2-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Veltman, Marijcke W. M., Ellen E. Craig und Patrick F. Bolton. „Autism spectrum disorders in Prader???Willi and Angelman syndromes: a systematic review“. Psychiatric Genetics 15, Nr. 4 (Dezember 2005): 243–54. http://dx.doi.org/10.1097/00041444-200512000-00006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Nicholls, Robert D. „Genomic imprinting and candidate genes in the Prader-Willi and Angelman syndromes“. Current Opinion in Genetics & Development 3, Nr. 3 (Juni 1993): 445–56. http://dx.doi.org/10.1016/0959-437x(93)90119-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Adams, Dawn, Samantha Clarke, Gemma Griffith, Pat Howlin, Jo Moss, Jane Petty, Penny Tunnicliffe und Chris Oliver. „Mental Health and Well-Being in Mothers of Children With Rare Genetic Syndromes Showing Chronic Challenging Behavior: A Cross-Sectional and Longitudinal Study“. American Journal on Intellectual and Developmental Disabilities 123, Nr. 3 (01.05.2018): 241–53. http://dx.doi.org/10.1352/1944-7558-123.3.241.

Der volle Inhalt der Quelle
Annotation:
Abstract It is well documented that mothers of children with challenging behavior (CB) experience elevated levels of stress and that this persists over time, but less is known about the experience of mothers of children with rare genetic syndromes. This article describes 2 studies, 1 cross-sectional and 1 longitudinal, comparing well-being in mothers of children with Angelman, Cornelia de Lange and Cri du Chat syndrome who have either shown chronic CB (n = 18) or low/no CB (n = 26) in the preceding 7 years. The presence of chronic, long-term CB increased maternal stress but not depression or anxiety, and did not influence positive well-being. Stress relating specifically to their child's genetic syndrome reduced with age, highlighting the need for further exploration in this area.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Welham, Alice, Johnny King L. Lau, Joanna Moss, Jenny Cullen, Suzanne Higgs, Gemma Warren, Lucy Wilde, Abby Marr, Faye Cook und Chris Oliver. „Are Angelman and Prader-Willi syndromes more similar than we thought? Food-related behavior problems in Angelman, Cornelia de Lange, Fragile X, Prader-Willi and 1p36 deletion syndromes“. American Journal of Medical Genetics Part A 167, Nr. 3 (18.02.2015): 572–78. http://dx.doi.org/10.1002/ajmg.a.36923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Hamrick, Lisa R., und Bridgette L. Tonnsen. „Validating and Applying the CSBS-ITC in Neurogenetic Syndromes“. American Journal on Intellectual and Developmental Disabilities 124, Nr. 3 (01.05.2019): 263–85. http://dx.doi.org/10.1352/1944-7558-124.3.263.

Der volle Inhalt der Quelle
Annotation:
Abstract Although social communication skills are commonly delayed in children with neurogenetic syndromes (NGS), skill profiles in very young children are largely under characterized, in part due to the lack of validated assessment measures appropriate for these populations. We addressed this gap by validating and applying a popular early social communication screening measure, the Communication and Symbolic Behavior Scales Developmental Profile – Infant-Toddler Checklist (CSBS-ITC) in three previously understudied neurogenetic groups: Angelman, Prader-Willi, and Williams syndromes. Our results suggest that when used within the appropriate scope of screening and surveillance, the CSBS-ITC detects meaningful variability in skills across ages in young children with NGS and may provide useful information about both individual- and population-level social communication profiles in these populations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Fridman, Cintia, und Célia P. Koiffmann. „Genomic imprinting: genetic mechanisms and phenotypic consequences in Prader-Willi and Angelman syndromes“. Genetics and Molecular Biology 23, Nr. 4 (Dezember 2000): 715–24. http://dx.doi.org/10.1590/s1415-47572000000400004.

Der volle Inhalt der Quelle
Annotation:
Chromosomal 15q11-q13 region is of great interest in Human Genetics because many structural rearrangements have been described for it (deletions, duplications and translocations) leading to phenotypes resulting in conditions such as the Prader-Willi (PWS) and Angelman (AS) syndromes which were the first human diseases found to be related to the differential expression of parental alleles (genomic imprinting). Contrary to Mendelian laws where the parental inheritance of genetic information does not influence gene expression, genomic imprinting is characterized by DNA modifications that produce different phenotypes depending on the parental origin of the mutation. Clinical manifestation of PWS appears when the loss of paternally expressed genes occurs and AS results from the loss of a maternally expressed gene. Different genetic mechanisms can lead to PWS or AS, such as deletions, uniparental disomy or imprinting mutation. In AS patients an additional class occurs with mutations on the UBE3A gene. Studies of PWS and AS patients can help us to understand the imprinting process, so that other genomic regions with similar characteristics can be located, and different syndromes can have their genetic mechanisms elucidated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie