Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „APPROXIMATION OPERATORS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "APPROXIMATION OPERATORS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "APPROXIMATION OPERATORS"
Lyamina, O. S. „ON NORMS AND CERTAIN CHARACTERISTICS OF TRIGONOMETRIC APPROXIMATION BY BASKAKOV OPERATORS“. Vestnik of Samara University. Natural Science Series 18, Nr. 9 (09.06.2017): 41–51. http://dx.doi.org/10.18287/2541-7525-2012-18-9-41-51.
Der volle Inhalt der QuelleDuma, Adrian, und Cristian Vladimirescu. „Approximation structures and applications to evolution equations“. Abstract and Applied Analysis 2003, Nr. 12 (2003): 685–96. http://dx.doi.org/10.1155/s1085337503301010.
Der volle Inhalt der QuelleTang, Weidong, Jinzhao Wu und Dingwei Zheng. „On Fuzzy Rough Sets and Their Topological Structures“. Mathematical Problems in Engineering 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/546372.
Der volle Inhalt der QuelleAnastassiou, George A. „Multivariate and abstract approximation theory for Banach space valued functions“. Demonstratio Mathematica 50, Nr. 1 (28.08.2017): 208–22. http://dx.doi.org/10.1515/dema-2017-0020.
Der volle Inhalt der QuelleQasim, Mohd, M. Mursaleen, Asif Khan und Zaheer Abbas. „Approximation by Generalized Lupaş Operators Based on q-Integers“. Mathematics 8, Nr. 1 (02.01.2020): 68. http://dx.doi.org/10.3390/math8010068.
Der volle Inhalt der QuelleYuan Wu, Pei. „Approximation by partial isometries“. Proceedings of the Edinburgh Mathematical Society 29, Nr. 2 (Juni 1986): 255–61. http://dx.doi.org/10.1017/s0013091500017624.
Der volle Inhalt der QuelleZhao, Tao, und Zhenbo Wei. „On Characterization of Rough Type-2 Fuzzy Sets“. Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4819353.
Der volle Inhalt der QuelleZayed, Mohra, Shahid Ahmad Wani und Mohammad Younus Bhat. „Unveiling the Potential of Sheffer Polynomials: Exploring Approximation Features with Jakimovski–Leviatan Operators“. Mathematics 11, Nr. 16 (21.08.2023): 3604. http://dx.doi.org/10.3390/math11163604.
Der volle Inhalt der QuelleKHAN, TAQSEER, MOHD SAIF und SHUZAAT ALI KHAN. „APPROXIMATION BY GENERALIZED q-SZASZ-MIRAKJAN ´ OPERATORS“. Journal of Mathematical Analysis 12, Nr. 6 (31.12.2021): 9–21. http://dx.doi.org/10.54379/jma-2021-6-2.
Der volle Inhalt der QuelleCrespo, José, und Francisco Javier Montáns. „Fractional Mathematical Operators and Their Computational Approximation“. Mathematical Problems in Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/4356371.
Der volle Inhalt der QuelleDissertationen zum Thema "APPROXIMATION OPERATORS"
Yang, Liming. „Subnormal operators, hyponormal operators, and mean polynomial approximation“. Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40103.
Der volle Inhalt der QuellePh. D.
Santos, Pedro. „Approximation Methods for Convolution Operators on the Real Line“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2005. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200500362.
Der volle Inhalt der QuelleSilva, Nunes Ana Luisa. „Spectral approximation with matrices issued from discretized operators“. Phd thesis, Université Jean Monnet - Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00952977.
Der volle Inhalt der QuelleQiu, James Zhijan. „Polynomial approximation and Carleson measures on a general domain and equivalence classes of subnormal operators“. Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-171825/.
Der volle Inhalt der QuelleSaad, Nasser. „Geometrical approximation methods for the discrete spectra of Schröedinger operators“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0017/NQ44809.pdf.
Der volle Inhalt der QuelleHansen, A. C. „On the approximation of spectra of linear Hilbert space operators“. Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603665.
Der volle Inhalt der QuelleFeijoo, Juan Alejandro Vazquez. „Analysis and identification of nonlinear system using parametric models of Volterra operators“. Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274962.
Der volle Inhalt der QuelleLindner, Marko. „Fredholm Theory and Stable Approximation of Band Operators and Their Generalisations“. Doctoral thesis, Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901182.
Der volle Inhalt der QuelleBorovyk, Vita. „Box approximation and related techniques in spectral theory“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5566.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on June 2, 2009) Vita. Includes bibliographical references.
Salim, Adil. „Random monotone operators and application to stochastic optimization“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT021/document.
Der volle Inhalt der QuelleThis thesis mainly studies optimization algorithms. Programming problems arising in signal processing and machine learning are composite in many cases, i.e they exhibit constraints and non smooth regularization terms. Proximal methods are known to be efficient to solve such problems. However, in modern applications of data sciences, functions to be minimized are often represented as statistical expectations, whose evaluation is intractable. This cover the case of online learning, big data problems and distributed computation problems. To solve this problems, we study in this thesis proximal stochastic methods, that generalize proximal algorithms to the case of cost functions written as expectations. Stochastic proximal methods are first studied with a constant step size, using stochastic approximation techniques. More precisely, the Ordinary Differential Equation method is adapted to the case of differential inclusions. In order to study the asymptotic behavior of the algorithms, the stability of the sequences of iterates (seen as Markov chains) is studied. Then, generalizations of the stochastic proximal gradient algorithm with decreasing step sizes are designed to solve composite problems. Every quantities used to define the optimization problem are written as expectations. This include a primal dual algorithm to solve regularized and linearly constrained problems and an optimization over large graphs algorithm
Bücher zum Thema "APPROXIMATION OPERATORS"
Linear operator equations: Approximation and regularization. New Jersey: World Scientific, 2009.
Den vollen Inhalt der Quelle findenApproximation of Hilbert space operators. 2. Aufl. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Den vollen Inhalt der Quelle findenChaitin-Chatelin, Françoise. Spectral approximation of linear operators. Philadelphia: Society for Industrial and Applied Mathematics, 2011.
Den vollen Inhalt der Quelle findenBede, Barnabás, Lucian Coroianu und Sorin G. Gal. Approximation by Max-Product Type Operators. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34189-7.
Der volle Inhalt der QuellePăltănea, Radu. Approximation Theory Using Positive Linear Operators. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2058-9.
Der volle Inhalt der QuelleCepedello Boiso, Manuel, Håkan Hedenmalm, Marinus A. Kaashoek, Alfonso Montes Rodríguez und Sergei Treil, Hrsg. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0648-0.
Der volle Inhalt der QuelleGupta, Vijay, und Michael Th Rassias. Moments of Linear Positive Operators and Approximation. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19455-0.
Der volle Inhalt der QuelleCarl, Bernd. Entropy, compactness, and the approximation of operators. Cambridge: Cambridge University Press, 1990.
Den vollen Inhalt der Quelle findenMarkov operators, positive semigroups, and approximation processes. Berlin: Walter de Gruyter GmbH & Co., KG, 2015.
Den vollen Inhalt der Quelle findenAnastassiou, George A. Frontiers in approximation theory. New Jersey: World Scientific, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "APPROXIMATION OPERATORS"
de Villiers, Johan. „Approximation Operators“. In Mathematics of Approximation, 85–98. Paris: Atlantis Press, 2012. http://dx.doi.org/10.2991/978-94-91216-50-3_5.
Der volle Inhalt der QuelleDeVore, Ronald A., und George G. Lorentz. „Approximation by Operators“. In Grundlehren der mathematischen Wissenschaften, 267–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02888-9_9.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Shift Invariant Univariate Integral Operators“. In Approximation Theory, 279–95. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_10.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Shift Invariant Multivariate Integral Operators“. In Approximation Theory, 297–323. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_11.
Der volle Inhalt der QuelleMaz’ya, Vladimir, und Gunther Schmidt. „Approximation of integral operators“. In Approximate Approximations, 69–91. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/141/04.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Differentiated Shift Invariant Univariate Integral Operators“. In Approximation Theory, 325–45. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_12.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Differentiated Shift Invariant Multivariate Integral Operators“. In Approximation Theory, 347–72. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_13.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Generalized Shift Invariant Univariate Integral Operators“. In Approximation Theory, 373–89. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_14.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Generalized Shift Invariant Multivariate Integral Operators“. In Approximation Theory, 391–400. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_15.
Der volle Inhalt der QuelleAnastassiou, George A., und Sorin G. Gal. „Global Smoothness Preservation by Trigonometric Operators“. In Approximation Theory, 203–10. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1360-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "APPROXIMATION OPERATORS"
Shao, Yingchao, Zhengjiang Wu und Keyun Qin. „Approximation Operators in Residuated Lattice“. In 2010 International Conference on Web Information Systems and Mining (WISM). IEEE, 2010. http://dx.doi.org/10.1109/wism.2010.40.
Der volle Inhalt der QuelleBencsik, Attila, Barnabas Bede, Dan Noje, Hajime Nobuhara und Kaoru Hirota. „Max product exponential approximation operators“. In 2006 IEEE International Symposium on Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/isie.2006.295516.
Der volle Inhalt der QuelleRudas, I. J., B. Bede, H. Nobuhara und K. Hirota. „On Approximation Capability of Pseudo-linear Shepard Approximation Operators“. In 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681876.
Der volle Inhalt der QuelleShao, Ming-Wen. „The Approximation Operators Within Formal Contexts“. In 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE'07). IEEE, 2007. http://dx.doi.org/10.1109/mue.2007.203.
Der volle Inhalt der QuelleZhao, Ming-qing, und Xiao-yan Zhao. „Axiomatization of Fuzzy Lower Approximation Operators“. In 2006 International Conference on Machine Learning and Cybernetics. IEEE, 2006. http://dx.doi.org/10.1109/icmlc.2006.258938.
Der volle Inhalt der QuellePagliani, P. „Information quanta and approximation spaces. I. Non-classical approximation operators“. In 2005 IEEE International Conference on Granular Computing. IEEE, 2005. http://dx.doi.org/10.1109/grc.2005.1547363.
Der volle Inhalt der QuelleGe, Xun. „Granularity-Wise Separations in Covering Approximation Spaces with Some Approximation Operators“. In 2008 International Symposium on Computer Science and Computational Technology. IEEE, 2008. http://dx.doi.org/10.1109/iscsct.2008.18.
Der volle Inhalt der QuelleBuzura, O. A. „Filtering algorithms development using spline approximation operators“. In 2012 International Conference and Exposition on Electrical and Power Engineering (EPE). IEEE, 2012. http://dx.doi.org/10.1109/icepe.2012.6463830.
Der volle Inhalt der QuelleReinov, Oleg I. „Approximation of p-summing operators by adjoints“. In THE 5TH INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MATHEMATICS: ICREM5. AIP, 2012. http://dx.doi.org/10.1063/1.4724114.
Der volle Inhalt der QuelleLouis, Anand. „Hypergraph Markov Operators, Eigenvalues and Approximation Algorithms“. In STOC '15: Symposium on Theory of Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2746539.2746555.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "APPROXIMATION OPERATORS"
Brandt, Sebastian, Ralf Küsters und Anni-Yasmin Turhan. Approximation and Difference in Description Logics. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.116.
Der volle Inhalt der QuelleBrent, Ronald. Theoretical and Numerical Validation of Scaler EM Propagation Modeling Using Parabolic Equations and the Pade Rational Operator Approximation. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2000. http://dx.doi.org/10.21236/ada386894.
Der volle Inhalt der QuelleGoldberg, Moshe, und Marvin Marcus. Stability Analysis of Finite Difference Approximations to Hyperbolic Systems,and Problems in Applied and Computational Matrix and Operator Theory. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1990. http://dx.doi.org/10.21236/ada230543.
Der volle Inhalt der QuelleArhin, Stephen, Babin Manandhar, Kevin Obike und Melissa Anderson. Impact of Dedicated Bus Lanes on Intersection Operations and Travel Time Model Development. Mineta Transportation Institute, Juni 2022. http://dx.doi.org/10.31979/mti.2022.2040.
Der volle Inhalt der Quelle