Zeitschriftenartikel zum Thema „ARRHYTHMIA DATABASE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "ARRHYTHMIA DATABASE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
CHIU, CHUANG-CHIEN, TONG-HONG LIN und BEN-YI LIAU. „USING CORRELATION COEFFICIENT IN ECG WAVEFORM FOR ARRHYTHMIA DETECTION“. Biomedical Engineering: Applications, Basis and Communications 17, Nr. 03 (25.06.2005): 147–52. http://dx.doi.org/10.4015/s1016237205000238.
Der volle Inhalt der QuelleZhai, Yuyun, Jinwei Li und Quan Zhang. „Network pharmacology and molecular docking analyses of the potential target proteins and molecular mechanisms underlying the anti-arrhythmic effects of Sophora Flavescens“. Medicine 102, Nr. 30 (28.07.2023): e34504. http://dx.doi.org/10.1097/md.0000000000034504.
Der volle Inhalt der QuelleDeal, Barbara J., Constantine Mavroudis, Jeffrey Phillip Jacobs, Melanie Gevitz und Carl Lewis Backer. „Arrhythmic complications associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease“. Cardiology in the Young 18, S2 (Dezember 2008): 202–5. http://dx.doi.org/10.1017/s104795110800293x.
Der volle Inhalt der QuelleMoreland-Head, Lindsay N., James C. Coons, Amy L. Seybert, Matthew P. Gray und Sandra L. Kane-Gill. „Use of Disproportionality Analysis to Identify Previously Unknown Drug-Associated Causes of Cardiac Arrhythmias Using the Food and Drug Administration Adverse Event Reporting System (FAERS) Database“. Journal of Cardiovascular Pharmacology and Therapeutics 26, Nr. 4 (06.01.2021): 341–48. http://dx.doi.org/10.1177/1074248420984082.
Der volle Inhalt der QuelleZeng, Yuni, Hang Lv, Mingfeng Jiang, Jucheng Zhang, Ling Xia, Yaming Wang und Zhikang Wang. „Deep arrhythmia classification based on SENet and lightweight context transform“. Mathematical Biosciences and Engineering 20, Nr. 1 (2022): 1–17. http://dx.doi.org/10.3934/mbe.2023001.
Der volle Inhalt der QuelleKapoor, Ankita, Samarthkumar Thakkar, Lucas Battel, Harsh P. Patel, Nikhil Agrawal, Shipra Gandhi, Pritika Manaktala et al. „The Prevalence and Impact of Arrhythmias in Hospitalized Patients with Sickle Cell Disorders: A Large Database Analysis“. Blood 136, Supplement 1 (05.11.2020): 5–6. http://dx.doi.org/10.1182/blood-2020-142099.
Der volle Inhalt der QuelleOTHMAN, MOHD AFZAN, und NORLAILI MAT SAFRI. „CHARACTERIZATION OF VENTRICULAR ARRHYTHMIAS USING A SEMANTIC MINING ALGORITHM“. Journal of Mechanics in Medicine and Biology 12, Nr. 03 (Juni 2012): 1250049. http://dx.doi.org/10.1142/s0219519412004946.
Der volle Inhalt der QuelleXu, Gang, Guangxin Xing, Juanjuan Jiang, Jian Jiang und Yongsheng Ke. „Arrhythmia Detection Using Gated Recurrent Unit Network with ECG Signals“. Journal of Medical Imaging and Health Informatics 10, Nr. 3 (01.03.2020): 750–57. http://dx.doi.org/10.1166/jmihi.2020.2928.
Der volle Inhalt der QuelleN. S. V Rama Raju, N., V. Malleswara Rao und I. Srinivasa Rao. „Automatic detection and classification of cardiac arrhythmia using neural network“. International Journal of Engineering & Technology 7, Nr. 3 (11.07.2018): 1482. http://dx.doi.org/10.14419/ijet.v7i3.14084.
Der volle Inhalt der QuelleHerman, Jeffrey N., Richard I. Fogel, Philip J. Podrid und Gary R. Garber. „Entropy: A cardiac arrhythmia multimedia database“. Journal of the American College of Cardiology 17, Nr. 2 (Februar 1991): A10. http://dx.doi.org/10.1016/0735-1097(91)91008-3.
Der volle Inhalt der QuelleUmapathi, Krishna Kishore, Aravind Thavamani, Harshitha Dhanpalreddy und Hoang H. Nguyen. „Prevalence of cardiac arrhythmias in cannabis use disorder related hospitalizations in teenagers from 2003 to 2016 in the United States“. EP Europace 23, Nr. 8 (16.03.2021): 1302–9. http://dx.doi.org/10.1093/europace/euab033.
Der volle Inhalt der QuelleGiriprasad Gaddam, P., A. Sanjeeva reddy und R. V. Sreehari. „Automatic Classification of Cardiac Arrhythmias based on ECG Signals Using Transferred Deep Learning Convolution Neural Network“. Journal of Physics: Conference Series 2089, Nr. 1 (01.11.2021): 012058. http://dx.doi.org/10.1088/1742-6596/2089/1/012058.
Der volle Inhalt der QuelleSoniwala, Mujtaba, Saadia Sherazi, Susan Schleede, Scott McNitt, Tina Faugh, Jeremiah Moore, Justin Foster et al. „Arrhythmia Burden in Patients with Indolent Lymphoma“. Blood 136, Supplement 1 (05.11.2020): 6–7. http://dx.doi.org/10.1182/blood-2020-140053.
Der volle Inhalt der QuelleHammad, Mohamed, Souham Meshoul, Piotr Dziwiński, Paweł Pławiak und Ibrahim A. Elgendy. „Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification“. Sensors 22, Nr. 23 (01.12.2022): 9347. http://dx.doi.org/10.3390/s22239347.
Der volle Inhalt der QuelleKozieł, Paweł, Maria Grodkiewicz, Klaudia Artykiewicz, Kamila Gorczyca, Marcin Czarkowski, Aleksandra Słupczyńska, Weronika Urbaś, Klaudia Podgórska, Aleksandra Puła und Urszula Krzysiek. „Does the watch can detect cardiac arrhythmias?“ Journal of Education, Health and Sport 13, Nr. 2 (08.01.2023): 293–98. http://dx.doi.org/10.12775/jehs.2023.13.02.042.
Der volle Inhalt der QuelleDeCamilla, J., X. Xia, M. Wang, J. Wade, B. Mykins, W. Zareba und J. P. Couderc. „The multiple arrhythmia dataset evaluation database (M.A.D.A.E.)“. Journal of Electrocardiology 51, Nr. 6 (November 2018): S106—S112. http://dx.doi.org/10.1016/j.jelectrocard.2018.08.005.
Der volle Inhalt der QuelleLinghu, Rongqian, und Ke Zhang. „Real-time Automatic Arrhythmia Detection System based on Extreme Gradient Boosting and Neural Network Algorithm“. Journal of Physics: Conference Series 2449, Nr. 1 (01.03.2023): 012033. http://dx.doi.org/10.1088/1742-6596/2449/1/012033.
Der volle Inhalt der QuelleCintra, Fatima Dumas, Marcia Regina Pinho Makdisse, Wercules Antônio Alves de Oliveira, Camila Furtado Rizzi, Francisco Otávio de Oliveira Luiz, Sergio Tufik, Angelo Amato Vincenzo de Paola und Dalva Poyares. „Exercise-induced ventricular arrhythmias: analysis of predictive factors in a population with sleep disorders“. Einstein (São Paulo) 8, Nr. 1 (März 2010): 62–67. http://dx.doi.org/10.1590/s1679-45082010ao1469.
Der volle Inhalt der QuelleLiu, Feifei, Chengyu Liu, Xinge Jiang, Zhimin Zhang, Yatao Zhang, Jianqing Li und Shoushui Wei. „Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases“. Journal of Healthcare Engineering 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/9050812.
Der volle Inhalt der QuelleKhalaf, Akram Jaddoa, und Samir Jasim Mohammed. „Verification and comparison of MIT-BIH arrhythmia database based on number of beats“. International Journal of Electrical and Computer Engineering (IJECE) 11, Nr. 6 (01.12.2021): 4950. http://dx.doi.org/10.11591/ijece.v11i6.pp4950-4961.
Der volle Inhalt der QuelleLin, Shih-Yi, Wu-Huei Hsu, Cheng-Chieh Lin, Cheng-Li Lin, Chun-Hao Tsai, Chih-Hsueh Lin, Der-Cherng Chen, Tsung-Chih Lin, Chung-Y. Hsu und Chia-Hung Kao. „Association of Arrhythmia in Patients with Cervical Spondylosis: A Nationwide Population-Based Cohort Study“. Journal of Clinical Medicine 7, Nr. 9 (23.08.2018): 236. http://dx.doi.org/10.3390/jcm7090236.
Der volle Inhalt der QuelleAbdou, Abdoul-Dalibou, Ndeye Fatou Ngom und Oumar Niang. „Arrhythmias Prediction Using an Hybrid Model Based on Convolutional Neural Network and Nonlinear Regression“. International Journal of Computational Intelligence and Applications 19, Nr. 03 (September 2020): 2050024. http://dx.doi.org/10.1142/s1469026820500248.
Der volle Inhalt der QuelleBae, Tae Wuk, Sang Hag Lee und Kee Koo Kwon. „An Adaptive Median Filter Based on Sampling Rate for R-Peak Detection and Major-Arrhythmia Analysis“. Sensors 20, Nr. 21 (29.10.2020): 6144. http://dx.doi.org/10.3390/s20216144.
Der volle Inhalt der QuelleMoody, G. B., und R. G. Mark. „The impact of the MIT-BIH Arrhythmia Database“. IEEE Engineering in Medicine and Biology Magazine 20, Nr. 3 (2001): 45–50. http://dx.doi.org/10.1109/51.932724.
Der volle Inhalt der QuelleShen, Qin, Hongxiang Gao, Yuwen Li, Qi Sun, Minglong Chen, Jianqing Li und Chengyu Liu. „An Open-Access Arrhythmia Database of Wearable Electrocardiogram“. Journal of Medical and Biological Engineering 40, Nr. 4 (22.07.2020): 564–74. http://dx.doi.org/10.1007/s40846-020-00554-3.
Der volle Inhalt der Quellekamil, Sarah, und Lamia Muhammed. „Arrhythmia Classification Using One Dimensional Conventional Neural Network“. International Journal of Advances in Soft Computing and its Applications 13, Nr. 3 (28.11.2021): 43–58. http://dx.doi.org/10.15849/ijasca.211128.04.
Der volle Inhalt der QuelleMa, Shuai, Jianfeng Cui, Weidong Xiao und Lijuan Liu. „Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms“. Computational Intelligence and Neuroscience 2022 (11.08.2022): 1–17. http://dx.doi.org/10.1155/2022/1577778.
Der volle Inhalt der QuelleQin, Qin, Jianqing Li, Yinggao Yue und Chengyu Liu. „An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm“. Journal of Healthcare Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/5980541.
Der volle Inhalt der QuelleHamarsheh, Qadri. „Autoregressive Modeling based ECG Cardiac Arrhythmias’ Database System“. International Journal of Circuits, Systems and Signal Processing 16 (26.07.2022): 1074–83. http://dx.doi.org/10.46300/9106.2022.16.130.
Der volle Inhalt der QuelleChintalapati, Usha Kumari, Md Aqeel Manzar, Tarun Varma N, Reethika A, Priya Samhitha B, Rohitha Sivani J, Kamran Ali Mirza und Pranav Kumar S. „Automated Detection of Depolarization and Repolarization of Cardiac Signal for Arrhythmia Classification“. International Journal of Online and Biomedical Engineering (iJOE) 17, Nr. 02 (12.02.2021): 173. http://dx.doi.org/10.3991/ijoe.v17i02.18955.
Der volle Inhalt der QuelleMathunjwa, Bhekumuzi M., Yin-Tsong Lin, Chien-Hung Lin, Maysam F. Abbod, Muammar Sadrawi und Jiann-Shing Shieh. „ECG Recurrence Plot-Based Arrhythmia Classification Using Two-Dimensional Deep Residual CNN Features“. Sensors 22, Nr. 4 (20.02.2022): 1660. http://dx.doi.org/10.3390/s22041660.
Der volle Inhalt der QuelleAnwar, Syed Muhammad, Maheen Gul, Muhammad Majid und Majdi Alnowami. „Arrhythmia Classification of ECG Signals Using Hybrid Features“. Computational and Mathematical Methods in Medicine 2018 (12.11.2018): 1–8. http://dx.doi.org/10.1155/2018/1380348.
Der volle Inhalt der QuelleZHANG, JIA-WEI, XIA LIU und JUN DONG. „CCDD: AN ENHANCED STANDARD ECG DATABASE WITH ITS MANAGEMENT AND ANNOTATION TOOLS“. International Journal on Artificial Intelligence Tools 21, Nr. 05 (Oktober 2012): 1240020. http://dx.doi.org/10.1142/s0218213012400209.
Der volle Inhalt der QuelleSoni, Ekta, Arpita Nagpal, Puneet Garg und Plácido Rogerio Pinheiro. „Assessment of Compressed and Decompressed ECG Databases for Telecardiology Applying a Convolution Neural Network“. Electronics 11, Nr. 17 (29.08.2022): 2708. http://dx.doi.org/10.3390/electronics11172708.
Der volle Inhalt der QuelleZhou, Haiying, Xiancheng Zhu, Sishan Wang, Kui Zhou, Zheng Ma, Jian Li, Kun-Mean Hou und Christophe De Vaulx. „A Novel Cardiac Arrhythmias Detection Approach for Real-Time Ambulatory ECG Diagnosis“. International Journal of Pattern Recognition and Artificial Intelligence 31, Nr. 10 (09.03.2017): 1758004. http://dx.doi.org/10.1142/s0218001417580046.
Der volle Inhalt der QuelleShadhon Chandra Mohonta und Md. Firoj Ali. „A Novel Approach to Detect Cardiac Arrhythmia Based on Continuous Wavelet Transform and Convolutional Neural Network“. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY 10 (29.12.2022): 37–41. http://dx.doi.org/10.47981/j.mijst.10(03)2022.341(37-41).
Der volle Inhalt der QuelleQi, Meng, Hongxiang Shao, Nianfeng Shi, Guoqiang Wang und Yifei Lv. „Arrhythmia classification detection based on multiple electrocardiograms databases“. PLOS ONE 18, Nr. 9 (27.09.2023): e0290995. http://dx.doi.org/10.1371/journal.pone.0290995.
Der volle Inhalt der QuelleYan, Wei, und Zhen Zhang. „Online Automatic Diagnosis System of Cardiac Arrhythmias Based on MIT-BIH ECG Database“. Journal of Healthcare Engineering 2021 (16.12.2021): 1–9. http://dx.doi.org/10.1155/2021/1819112.
Der volle Inhalt der QuelleMeng, Yang, Guoxin Liang und Mei Yue. „Deep Learning-Based Arrhythmia Detection in Electrocardiograph“. Scientific Programming 2021 (13.05.2021): 1–7. http://dx.doi.org/10.1155/2021/9926769.
Der volle Inhalt der QuelleWang, Liang-Hung, Ze-Hong Yan, Yi-Ting Yang, Jun-Ying Chen, Tao Yang, I.-Chun Kuo, Patricia Angela R. Abu, Pao-Cheng Huang, Chiung-An Chen und Shih-Lun Chen. „A Classification and Prediction Hybrid Model Construction with the IQPSO-SVM Algorithm for Atrial Fibrillation Arrhythmia“. Sensors 21, Nr. 15 (01.08.2021): 5222. http://dx.doi.org/10.3390/s21155222.
Der volle Inhalt der QuelleXiao, Qiao, Khuan Lee, Siti Aisah Mokhtar, Iskasymar Ismail, Ahmad Luqman bin Md Pauzi, Qiuxia Zhang und Poh Ying Lim. „Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review“. Applied Sciences 13, Nr. 8 (14.04.2023): 4964. http://dx.doi.org/10.3390/app13084964.
Der volle Inhalt der QuelleMANDAL, SAURAV, und NABANITA SINHA. „ARRHYTHMIA DIAGNOSIS FROM ECG SIGNAL ANALYSIS USING STATISTICAL FEATURES AND NOVEL CLASSIFICATION METHOD“. Journal of Mechanics in Medicine and Biology 21, Nr. 03 (18.03.2021): 2150025. http://dx.doi.org/10.1142/s0219519421500251.
Der volle Inhalt der QuelleSarshar, Nazanin Tataei, und Mohammad Mirzaei. „Premature Ventricular Contraction Recognition Based on a Deep Learning Approach“. Journal of Healthcare Engineering 2022 (26.03.2022): 1–7. http://dx.doi.org/10.1155/2022/1450723.
Der volle Inhalt der QuelleUllah, Wusat, Imran Siddique, Rana Muhammad Zulqarnain, Mohammad Mahtab Alam, Irfan Ahmad und Usman Ahmad Raza. „Classification of Arrhythmia in Heartbeat Detection Using Deep Learning“. Computational Intelligence and Neuroscience 2021 (19.10.2021): 1–13. http://dx.doi.org/10.1155/2021/2195922.
Der volle Inhalt der QuelleBen Itzhak, Sagi, Shir Sharony Ricon, Shany Biton, Joachim A. Behar und Jonathan A. Sobel. „Effect of temporal resolution on the detection of cardiac arrhythmias using HRV features and machine learning“. Physiological Measurement 43, Nr. 4 (28.04.2022): 045002. http://dx.doi.org/10.1088/1361-6579/ac6561.
Der volle Inhalt der QuelleWilly, Kevin, Julia Köbe, Florian Reinke, Benjamin Rath, Christian Ellermann, Julian Wolfes, Felix K. Wegner et al. „Usefulness of the MADIT-ICD Benefit Score in a Large Mixed Patient Cohort of Primary Prevention of Sudden Cardiac Death“. Journal of Personalized Medicine 12, Nr. 8 (28.07.2022): 1240. http://dx.doi.org/10.3390/jpm12081240.
Der volle Inhalt der QuelleYang, Xiong, Xin Yu Jin und Jian Feng Shen. „A PVC Identification Method of ECG Signal Based on Improved BPNN“. Applied Mechanics and Materials 738-739 (März 2015): 578–81. http://dx.doi.org/10.4028/www.scientific.net/amm.738-739.578.
Der volle Inhalt der QuelleIlbeigipour, Sadegh, Amir Albadvi und Elham Akhondzadeh Noughabi. „Real-Time Heart Arrhythmia Detection Using Apache Spark Structured Streaming“. Journal of Healthcare Engineering 2021 (22.04.2021): 1–13. http://dx.doi.org/10.1155/2021/6624829.
Der volle Inhalt der QuelleTejedor, Javier, David G. Marquez, Constantino A. Garcia und Abraham Otero. „A Tandem Feature Extraction Approach for Arrhythmia Identification“. Electronics 10, Nr. 8 (19.04.2021): 976. http://dx.doi.org/10.3390/electronics10080976.
Der volle Inhalt der QuelleSATHYAMANGALAM NATARAJAN, SHIVAPPRIYA, ARUN KUMAR SHANMUGAM, JUDE HEMANTH DURAISAMY und HARIKUMAR RAJAGURU. „PREDICTION OF CARDIAC ARRHYTHMIA USING MULTI CLASS CLASSIFIERS BY INCORPORATING WAVELET TRANSFORM BASED FEATURES“. DYNA 97, Nr. 4 (01.07.2022): 418–24. http://dx.doi.org/10.6036/10458.
Der volle Inhalt der Quelle