Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Artificial photosynthesis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Artificial photosynthesis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Artificial photosynthesis"
INOUE, Haruo. „Photosynthesis and Artificial Photosynthesis“. Journal of The Institute of Electrical Engineers of Japan 138, Nr. 9 (01.09.2018): 590–93. http://dx.doi.org/10.1541/ieejjournal.138.590.
Der volle Inhalt der QuelleSuzuki, Takamasa. „Artificial photosynthesis“. Young Scientists Journal 6, Nr. 13 (2013): 20. http://dx.doi.org/10.4103/0974-6102.107614.
Der volle Inhalt der QuelleIMAHORI, Hiroshi. „Artificial Photosynthesis“. TRENDS IN THE SCIENCES 16, Nr. 5 (2011): 26–29. http://dx.doi.org/10.5363/tits.16.5_26.
Der volle Inhalt der QuelleGust, Devens, Thomas A. Moore und Ana L. Moore. „Artificial photosynthesis“. Theoretical and Experimental Plant Physiology 25, Nr. 3 (2013): 182–85. http://dx.doi.org/10.1590/s2197-00252013005000002.
Der volle Inhalt der QuelleCalvin, Melvin. „Artificial photosynthesis“. Journal of Membrane Science 33, Nr. 2 (September 1987): 137–49. http://dx.doi.org/10.1016/s0376-7388(00)80373-7.
Der volle Inhalt der QuelleBenniston, Andrew C., und Anthony Harriman. „Artificial photosynthesis“. Materials Today 11, Nr. 12 (Dezember 2008): 26–34. http://dx.doi.org/10.1016/s1369-7021(08)70250-5.
Der volle Inhalt der QuelleStokes, Trevor. „Artificial photosynthesis“. Trends in Plant Science 6, Nr. 2 (Februar 2001): 52. http://dx.doi.org/10.1016/s1360-1385(01)01879-9.
Der volle Inhalt der QuelleNajafpour, Mohammad Mahdi, Robert Carpentier und Suleyman I. Allakhverdiev. „Artificial photosynthesis“. Journal of Photochemistry and Photobiology B: Biology 152 (November 2015): 1–3. http://dx.doi.org/10.1016/j.jphotobiol.2015.04.008.
Der volle Inhalt der QuelleCalzaferri, Gion. „Artificial Photosynthesis“. Topics in Catalysis 53, Nr. 3-4 (04.12.2009): 130–40. http://dx.doi.org/10.1007/s11244-009-9424-9.
Der volle Inhalt der QuelleHarriman, Anthony. „Artificial photosynthesis“. Journal of Photochemistry and Photobiology A: Chemistry 51, Nr. 1 (Februar 1990): 41–43. http://dx.doi.org/10.1016/1010-6030(90)87039-e.
Der volle Inhalt der QuelleDissertationen zum Thema "Artificial photosynthesis"
Ro, Youngju. „Molecular complexes for artificial photosynthesis“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS412/document.
Der volle Inhalt der QuelleDevelopment of renewable energy sources like solar fuels is a crucial issue in the actual context of global warming. Water is an environmentally friendly, cheap and abundant source of the electrons and protons needed for fuel production. Therefore, light-activated water oxidation is a key step in artificial photosynthesis and the development of efficient, robust and sustainable catalysts is an important goal for chemists. In the first part of this study, we focus on the development of such catalysts based on earth abundant copper complexes. The water oxidation electrocatalysis and photocatalysis were investigated. The second part of the work concerns the ion pair formation between the oppositely double charged species of complex catalyst and electron acceptor and Photosensitizer and complex catalyst are investigated. This study should bring solid evidence on the influence of each component in photosystem through the ion pair association and dissociation. In the third part, we study a synthetic sensitizer-catalyst system that can photoactivate a water molecule bound to the catalytic unit through a two-electron, two-proton abstraction, performed all the photophysical characterization of the dyad. Therefore, studying molecular complexes for artificial photosynthesis provides diverse direction to develop the utilization efficiency of solar energy
Bazzan, Irene. „Molecular Catalysis towards Artificial Photosynthesis“. Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424626.
Der volle Inhalt der QuelleIl 21° secolo appare come un momento di enorme incertezza per il settore energetico: un’energia sicura, pulita, continua ed equamente distribuita risulta necessaria per la crescita economica e lo sviluppo della società umana. Riuscire a trovare un’adatta alternativa ai combustibili fossili costituisce una sfida affascinante per l’avanzamento scientifico. Considerando diverse possibilità, le risorse rinnovabili sembrano essere in grado di rispondere meglio alla richiesta energetica e fra queste, l’energia solare è sicuramente la più sfruttabile, però deve essere raccolta, convertita e conservata. Ispirandosi alla Natura, la fotosintesi artificiale è una soluzione in grado di convertire efficientemente l’energia derivante dalla luce solare in combustibili alternativi come idrogeno o altre forme ridotte di carbonio. Questo sistema artificiale presenta una struttura articolata di eventi, che terminano con reazioni di ossidoriduzione che necessitano un’efficiente catalisi. All’interno del panorama descritto, questo progetto di tesi è quindi focalizzato nello sviluppo di nuovi sistemi molecolari basati su metalli abbondanti sulla superficie terrestre in grado di catalizzare processi redox coinvolti nella fotosintesi artificiale. Lo studio di sistemi foto indotti è stato privilegiato, poiché si avvicina maggiormente all’ attivazione da parte della luce di un ideale sistema artificiale. Inoltre, ispirandosi ai numerosi esempi presenti in letteratura, i catalizzatori considerati sono basati su strutture con centri attivi sia multi che mono metallici. Il lavoro è maggiormente focalizzato sulla reazione di ossidazione dell’acqua, considerata ancora la problematica maggiore nel processo di fotosintesi artificiale, ma sono stati presi in considerazione anche studi preliminari per la catalisi della reazione di riduzione di CO2. Inizialmente, un osso cluster di Cobalto, [Co4(μ3-O)4(μ-O2CCH3)4(pyridine)4] è stato esaminato come catalizzatore molecolare in un sistema foto attivato con Ru(bpy)32+ come fotosensibilizzatore e S2O82- come donatore sacrificale. La specie è stata caratterizzata mediante diverse tecniche analitiche e variando le proprietà elettroniche dei sostituenti, correlazioni fra la struttura e l’attività sono state investigate con voltammetria ciclica e laser flash fotolisi. Inoltre, un approccio sintetico volto alla modifica strutturale del catalizzatore è stato valutato per progettare diadi non covalenti tra la specie stessa e il fotosensibilizzatore sfruttando interazioni π−π. Altre specie ad alta nuclearità, contenenti Cobalto e con leganti totalmente inorganici (poliossometallati, POMs) sono stati valutati per la catalisi di ossidazione dell’acqua. In particolare i complessi [Co9(H2O)6(OH)3(PW9O34)3]16-, [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5- e [{Co4(OH)3PO4}4(PW9O34)4]16- sono stati investigati nel sistema foto attivato e con laser flash fotolisi. Interessanti informazioni di meccanismo sono state ottenute grazie allo studio di questi composti. Inoltre, durante il lavoro di tesi un nuovo composto basato su un unico atomo di Rame e un legante tetraazaciclotetradecano è stato proposto come catalizzatore per ossidazione dell’acqua. In particolare, la specie è stata caratterizzata nel sistema elettrochimico e la sua attività catalitica è stata valutata mediante voltammetria ciclica, elettrolisi ed esperimenti fotoelettrochimici. Con lo sguardo volto allo sviluppo di un dispositivo per water splitting attivato dalla luce solare, in questa tesi per la prima volta è stata esaminata una specie molecolare di Rame in combinazione con la luce. I risultati ottenuti sembrano aprire la strada a nuove linee di ricerca legate a specie molecolari di Rame con leganti macrociclici azotati. Infine, per quanto riguarda la catalisi della reazione di riduzione di CO2, un complesso di Rame con legante POM è stato selezionato, [Cu(SiW11O39)]6-, ed esperimenti di voltammetria ciclica sono stati effettuati per valutarne l’attività catalitica. Questo lavoro di tesi si propone di indicare un metodo di lavoro per ottenere una migliore comprensione dell’argomento trattato, attraverso l’ottimizzazione delle condizioni sperimentali e approfondimenti riguardanti il meccanismo dei processi in esame.
Yamamoto, Masanori. „Studies on Molecule‐Based Artificial Photosynthesis“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225562.
Der volle Inhalt der QuelleBerg, Katja E. „Bimetallic model compounds for artificial photosynthesis /“. Stockholm, 1997. http://www.lib.kth.se/abs98/berg0109.pdf.
Der volle Inhalt der QuelleLiu, Rui. „Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis“. Thesis, Boston College, 2013. http://hdl.handle.net/2345/3160.
Der volle Inhalt der QuellePhotosynthesis converts solar energy and stores it in chemical forms. It is one of the most important processes in nature. Artificial photosynthesis, similar to nature, can provide us reaction products that can potentially be used as fuel. This process promises a solution to challenges caused by the intermitted nature of solar energy. Theoretical studies show that photosynthesis can be efficient and inexpensive. To achieve this goal, we need materials with suitable properties of light absorption charge separation, chemical stability, and compatibility with catalysts. For large-scale purpose, the materials should also be made of earth abundant elements. However, no material has been found to meet all requirements. As a result, existing photosynthesis is either too inefficient or too costly, creating a critical challenge in solar energy research. In this dissertation, we use inorganic semiconductors as model systems to present our strategies to combat this challenge through novel material designs of material morphologies, synthesis and chemical reaction pathways. Guided by an insight that a collection of disired properties may be obtained by combining multiple material components (such as nanostructured semiconductor, effective catalysts, designed chemical reactions) through heterojunctions, we have produced some advanced systems aimed at solving fundamental challenges common in inorganic semiconductors. Most of the results will be presented within this dissertation of highly specific reaction routes for carbon dioxide photofixation as well as solar water splitting
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Álvarez, Prada Luis Ignacio. „Ruthenium and Platinum Nanoparticles For Artificial Photosynthesis“. Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673692.
Der volle Inhalt der QuelleLa creciente demanda energética, necesaria para cubrir las necesidades de una población cada vez más numerosa, ha acelerado el cambio climático en las últimas décadas, debido al empleo predominantemente de combustibles fósiles, que además de contaminantes son finitos y están mal distribuidos globalmente. Esto ha propiciado el interés por emplear energías más limpias. Así, tomando la naturaleza como ejemplo, surge la Fotosíntesis Artificial, una forma de almacenar la ingente energía solar que recibimos en la Tierra en forma de enlaces químicos en diferentes sustancias. Este proceso incluye, además de la oxidación de agua a dioxígeno, la reacción de reducción de protones y la reducción de CO2, obteniéndose, respectivamente, dihidrógeno y productos derivados del carbono como metano o metanol. En ambos casos se requiere el empleo de un catalizador para hacer el proceso eficiente, y un material fotoactivo que desencadene el proceso inducido por la luz. En el Capítulo I, se desarrolla aún más la problemática del cambio climático y el estado actual de los procesos de reducción de protones y CO2, señalando el empleo de semiconductores como el nitruro de carbono como material fotoactivo y de nanopartículas metálicas como catalizadores. Se destaca, además, el empleo del método organometálico para la preparación de estos catalizadores, en condiciones suaves de reacción y con un gran control sobre sus características físicas y químicas. En el Capítulo II, se exponen los objetivos de este trabajo, centrados en el diseño, caracterización multitécnica y uso de materiales basados en nanopartículas metálicas para llevar a cabo estos procesos. En el Capítulo III, se preparan nanopartículas de rutenio empleando diferentes ligandos como estabilizadores, observando diferencias en su actividad y estabilidad electrocatalítica en la reducción de protones, relacionados con sus propiedades y composición. En el Capítulo IV, se emplea carburo de nitrógeno grafítico mesoporoso (mpg-CN) como material fotoactivo para la reducción fotoinducida de CO2. Se comprueba el efecto que tiene la incorporación de nanopartículas de platino al semiconductor, mejorando notablemente la eficiencia y la selectividad del proceso. En el Capítulo V, vuelve a utilizarse mpg-CN pero con nanopartículas de rutenio y platino para la fotorreducción de protones. Las nanopartículas de rutenio se preparan de diferentes maneras, utilizando ligandos estabilizadores, materiales de carbono o directamente en el semiconductor. Se comprueba que, independientemente de la técnica, la eficiencia catalítica observada es similar en todos estos sistemas, y muy inferior a la obtenida con Pt. Las observaciones catalíticas se respaldan con estudios fotofísicos. En el Capítulo VI, se perparan nanopartículas de Pt soportadas en cuatro materiales de carbono diferentes (nanohorns y nanotubos de carbono, óxido de grafeno reducido y grafito), que son incorporadas a un sistema de detección electroanalítica, mostrándose eficaces para la detección de parabenos a niveles de ultratraza. Finalmente, en el Capítulo VII se exponen las conclusiones globales.
The increasing energy demand, necessary to meet the needs of the growing world population, has accelerated climate change in recent decades, due to the predominantly use of fossil fuels, which in addition to being pollutants are non-renewable and ill-distributed. This has aroused interest in cleaner energetic alternatives. Thus, taking Nature as an example, Artificial Photosynthesis emerges as a way to store the enormous amount of solar radiation received by the Earth, in the form of chemical bonds of a fuel. This process includes, besides the oxidation of water to dioxygen, the reduction of protons and the reduction of CO2, obtaining, respectively, dihydrogen and products derived from carbon such as methane or methanol. In both cases, the use of a catalyst is required to make the process efficient, and a photoactive material that triggers the process induced by light. Chapter I further develops the problem of climate change and the current state of the proton and CO2 reduction processes, pointing out the use of semiconductors such as carbon nitride as photoactive material and metallic nanoparticles as catalysts. In addition, the use of the organometallic method for the preparation of these catalysts is highlighted, under mild reaction conditions and with great control over their physical and chemical features. In Chapter II, the objectives of this work are exposed, centered on the design, multi-technique characterization and testing of materials based on metallic nanoparticles to carry out these processes. In Chapter III, ruthenium nanoparticles are prepared using different ligands as stabilizers, observing differences in their activity and electrocatalytic stability in the reduction of protons, related to their physical properties and composition. In Chapter IV, mesoporous graphitic nitrogen carbide (mpg-CN) is used as a photoactive material for photoinduced CO2 reduction. The effect of the loading of platinum nanoparticles to the semiconductor is tested, notably improving the efficiency and selectivity of the process. In Chapter V, mpg-CN is used again but with ruthenium and platinum nanoparticles for the photoreduction of protons. Ruthenium nanoparticles are prepared in different ways, using stabilizing ligands, carbon materials or directly deposited in the semiconductor. It is found that, regardless of the technique, the observed catalytic efficiency is similar in all these systems, and much lower than the performance of Pt. The catalytic observations are supported by photophysical studies. In Chapter VI, Pt nanoparticles supported on four different carbon materials (carbon nanohorns, carbon nanotubes, reduced graphene oxide and grahpite) are prepared and incorporated into an electroanalytical sensing platform, proving effective for the detection of parabens at ultra-trace levels. Finally, in Chapter VII the global conclusions are presented.
Universitat Autònoma de Barcelona. Programa de Doctorat en Química
GOBBATO, THOMAS. „Bio-inspired Nano-Architectures for Artificial Photosynthesis“. Doctoral thesis, Università degli Studi di Trieste, 2023. https://hdl.handle.net/11368/3041030.
Der volle Inhalt der QuelleAmong the possible technologies for artificial photosynthesis, photoelectrochemical cells possess the advantage to decouple the overall water splitting reaction into the related semi-reactions enabling the study and optimization of the single process. In this Thesis a novel approach towards artificial photosystems design has been reported. The quantasome approach is a unique bio-inspired design strategy that pair down to essentials the PSII mimicry by shaping an innovative supramolecular material with the essential components of the quantasome: a light-harvesting antenna and a catalytic reaction center embedded in a unique ensemble. Bonchio, Prato and co-workers reported the very first example of an artificial quantasome (QS), a supramolecular artificial photosystem designed for light-induced water oxidation reaction. This innovative material is composed of a bis-cationic perylene bisimide photosensitizer (PBI2+) and a deca-anionic state-of-the-art water oxidation catalyst (Ru4POM). The artificial quantasome assembly forms in water, exploiting the complementary electrostatic interactions and hydrophobic-hydrophilic properties of the two selected molecular building blocks resulting in a supramolecular material (QS) with a definite chromophore to catalyst stoichiometry of 5:1. The structural characterization of this artificial quantasome (QS) and its building blocks, using state-of-the-art techniques of scanning probe microscopy and electron microscopy, is reported. The experiments performed point out to a lamellar structure of the supramolecular material resembling the self-organization of the natural enzyme PSII. This project aimed also at the synthesis of new artificial photosystems, indeed innovative hydrophilic photosynthetic materials are obtained by a combined supramolecular and click-chemistry strategy. The designed synthetic procedure adopted relies on click-chemistry functionalization of the N-terminal positions of PBI scaffolds. The functionalization of the N-terminal positions of a PBI scaffold set the parallelism with the natural antennae, that via N-terminal loops interactions modulate the structure of PSII-LHCII supercomplexes. Both new chromophores PBIn-TEGlock and PBI-TEGunlock present and estimated potential of the excited state suitable to drive photo-assisted water oxidation. Moreover, the synthetic route here reported is envisaged to maintain the positive peripherical charges on the molecular structures obtained in order to exploit complementary electrostatic interaction with Ru4POM water oxidation catalyst (WOC). The interactions of these new antennae with Ru4POM WOC yield unprecedented artificial quantasomes (QS-TEGlock, QS-TEGunlock) with tetraethylene glycol (TEG) functionalization. Photoelectrocatalytic characterization of the new artificial quantasomes is reported by coupling the supramolecular materials with state-of-the-art “inverse opal” indium tin oxide (IO-ITO) substrates. IO architectures are selected because their structure is reported to promote internal light scattering, due to the intrinsic geometry of the 3D-photoconductive lattice. QS-TEGlock exhibits a superior response for all the conditions explored, reporting a 340% photocurrent enhancement with respect to QS. In order to decouple the hydrophilic effect of TEG terminals from their cross-linking impact photoelectrocatalytic characterization of QS-TEGunlock is achieved. It is found that the decoration of the PBI chromophores with TEG residues, with or without cross-linking, can leverage the quantasome hydration and facilitate water oxidation reaction. Formation of TEG-templated hydration shells is verified by Raman microscopy of water exposed photoanodes.11 The presence of TEG-templated hydration shells sets a parallelism with natural PSII water channels. The added value of TEG cross-linkers is probed under prolonged photoelectrolysis whereby the unlocked structure reports a major photocurrent loss with respect to the locked one.
Tran, Anh. „Ruthenium-manganese complexes as models for artificial photosynthesis /“. Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3169.
Der volle Inhalt der QuelleJohansson, Olof. „Ruthenium(II) Polypyridyl Complexes : Applications in Artificial Photosynthesis“. Doctoral thesis, Stockholm : Institutionen för organisk kemi, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-93.
Der volle Inhalt der QuellePIZZOLATO, ERICA. „New Molecules and Nano-materials for Artificial Photosynthesis“. Doctoral thesis, Università degli Studi di Trieste, 2017. http://hdl.handle.net/11368/2908179.
Der volle Inhalt der QuelleBücher zum Thema "Artificial photosynthesis"
Razeghifard, Reza, Hrsg. Natural and Artificial Photosynthesis. Hoboken, NJ, USA: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118659892.
Der volle Inhalt der QuelleBachmeier, Andreas S. J. L. Metalloenzymes as Inspirational Electrocatalysts for Artificial Photosynthesis. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47069-6.
Der volle Inhalt der QuelleBrinkert, Katharina. Energy Conversion in Natural and Artificial Photosynthesis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77980-5.
Der volle Inhalt der QuelleJ, Meyer Gerald, Hrsg. Molecular level artificial photosynthetic materials. New York: John Wiley & Sons, 1997.
Den vollen Inhalt der Quelle findenF, Collings Anthony, und Critchley Christa, Hrsg. Artificial photosynthesis: From basic biology to industrial application. Weinheim: Wiley-VCH, 2005.
Den vollen Inhalt der Quelle findenNajafpour, Mohammad, Hrsg. Artificial Photosynthesis. InTech, 2012. http://dx.doi.org/10.5772/2445.
Der volle Inhalt der QuelleArtificial Photosynthesis. Elsevier, 2016. http://dx.doi.org/10.1016/s0065-2296(16)x0004-3.
Der volle Inhalt der QuelleCollings, Anthony F., und Christa Critchley, Hrsg. Artificial Photosynthesis. Wiley, 2005. http://dx.doi.org/10.1002/3527606742.
Der volle Inhalt der QuelleBruno, Robert. Artificial Photosynthesis. Elsevier Science & Technology, 2016.
Den vollen Inhalt der Quelle findenHarriman. Artificial Photosynthesis. Wiley & Sons, Incorporated, John, 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Artificial photosynthesis"
Razeghifard, Reza. „Artificial Photosynthesis“. In Natural and Artificial Photosynthesis, 121–41. Hoboken, NJ, USA: John Wiley & Sons Inc., 2013. http://dx.doi.org/10.1002/9781118659892.ch4.
Der volle Inhalt der QuelleMuckerman, James T., und Etsuko Fujita. „Artificial Photosynthesis“. In ACS Symposium Series, 283–312. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1025.ch015.
Der volle Inhalt der QuelleStyring, Stenbjörn, Anders Thapper und Reiner Lomoth. „Artificial Photosynthesis“. In Encyclopedia of Applied Electrochemistry, 107–14. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_246.
Der volle Inhalt der QuelleDas, Ranjana. „Artificial Photosynthesis“. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1143–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_132.
Der volle Inhalt der QuelleDas, Ranjana. „Artificial Photosynthesis“. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_132-1.
Der volle Inhalt der QuelleChow, Wah Soon. „Towards Artificial Photosynthesis“. In Photosynthesis, 607–22. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1579-0_24.
Der volle Inhalt der QuelleGust, Devens, Thomas A. Moore und Ana L. Moore. „Mimicking Bacterial Photosynthesis“. In Artificial Photosynthesis, 187–210. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606742.ch10.
Der volle Inhalt der QuelleNatali, Mirco, und Franco Scandola. „Supramolecular Artificial Photosynthesis“. In Lecture Notes in Chemistry, 1–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31671-0_1.
Der volle Inhalt der QuelleLowe, Ian. „Artificial Photosynthesis: Social and Political Issues“. In Artificial Photosynthesis, 1–12. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606742.ch1.
Der volle Inhalt der QuelleGhirardi, Maria L., Paul King, Sergey Kosourov, Marc Forestier, Liping Zhang und Michael Seibert. „Development of Algal Systems for Hydrogen Photoproduction: Addressing the Hydrogenase Oxygen-sensitivity Problem“. In Artificial Photosynthesis, 211–27. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606742.ch11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Artificial photosynthesis"
Zhang, Jenny. „Semi-artificial Photosynthesis: a Platform for Studying and Wiring Photosynthesis“. In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.261.
Der volle Inhalt der QuelleOsella, Silvio. „Hybrid nanomaterials for artificial photosynthesis“. In Physical Chemistry of Semiconductor Materials and Interfaces IX, herausgegeben von Daniel Congreve, Christian Nielsen und Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2569969.
Der volle Inhalt der QuelleRen, Xiang, Parham Ghassemi, Wenqiao Yuan, Jack Zhou, Parkson Chong und Moses Noh. „Cell-free artificial photosynthesis system“. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994433.
Der volle Inhalt der QuelleWang, Qian. „Photocatalyst sheets for artificial photosynthesis“. In Catalyst Design Strategies for Photo- and Electrochemical Fuel Synthesis. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.ecat.2023.031.
Der volle Inhalt der QuelleBonchio, Marcella. „SUPRAMOLECULAR ARCHITECTURES for ARTIFICIAL PHOTOSYNTHESIS“. In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.201.
Der volle Inhalt der QuelleLiu, Jian. „ENZYME INSPIRED ARTIFICIAL PHOTOSYNTHESIS“. In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04262.
Der volle Inhalt der QuelleLiu, Jian. „Enzyme Inspired Artificial Photosynthesis“. In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04263.
Der volle Inhalt der QuelleZhang, Xuming. „Optofluidics for artificial photosynthesis“. In The 7th International Multidisciplinary Conference on Optofluidics 2017. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/optofluidics2017-04271.
Der volle Inhalt der QuelleAger, Joel W., Min-Hyung Lee und Ali Javey. „Solar fuels production by artificial photosynthesis“. In SOLAR CHEMICAL ENERGY STORAGE: SolChES. AIP, 2013. http://dx.doi.org/10.1063/1.4848078.
Der volle Inhalt der QuelleKang, Ji-Hoon, Yun Jeong Hwang, Byeong-Kwon Ju, Jung-Young Son und Min-Chul Park. „Vision in plants by artificial photosynthesis“. In 2018 17th Workshop on Information Optics (WIO). IEEE, 2018. http://dx.doi.org/10.1109/wio.2018.8643550.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Artificial photosynthesis"
Wiedner, Eric, Amity Andersen, Bojana Ginovska und Niranjan Govind. Artificial Photosynthesis with Next Generation Molecular Catalysts. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1734570.
Der volle Inhalt der QuelleWamser, C., und H. Lonsdale. Thin-film composite membranes for artificial photosynthesis. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5997417.
Der volle Inhalt der QuelleAmashukeli, Xenia, Harry Atwater, Joel Haber und Frances Houle. Final Science Report of the Joint Center for Artificial Photosynthesis (JCAP). Office of Scientific and Technical Information (OSTI), Dezember 2021. http://dx.doi.org/10.2172/1835610.
Der volle Inhalt der QuelleOtvos, J. W., und M. Calvin. Twenty-five years of artificial photosynthesis research at Ernest Orlando Lawrence Berkeley National Laboratory. Office of Scientific and Technical Information (OSTI), Februar 1996. http://dx.doi.org/10.2172/208308.
Der volle Inhalt der QuelleS.S. Saavedra und Neal R. Armstrong. Final Scientific/Technical Report - Biomimetic Energy Transduction: Artificial Photosynthesis in a Stabilized Lipid Membrane Coupled to a Semiconductor. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/899970.
Der volle Inhalt der QuelleGust, D., und T. A. Moore. Artificial photosynthesis using chlorophyll based carotenoid quinone triads: A brief synopsis of research progress as of 31 December 1986. Office of Scientific and Technical Information (OSTI), Dezember 1986. http://dx.doi.org/10.2172/5693588.
Der volle Inhalt der QuelleHindman, J. C., J. E. Hunt und J. J. Katz. Energy transfer in real and artificial photosynthetic systems. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/28417.
Der volle Inhalt der Quelle