Dissertationen zum Thema „Artificial photosynthesis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Artificial photosynthesis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Ro, Youngju. „Molecular complexes for artificial photosynthesis“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS412/document.
Der volle Inhalt der QuelleDevelopment of renewable energy sources like solar fuels is a crucial issue in the actual context of global warming. Water is an environmentally friendly, cheap and abundant source of the electrons and protons needed for fuel production. Therefore, light-activated water oxidation is a key step in artificial photosynthesis and the development of efficient, robust and sustainable catalysts is an important goal for chemists. In the first part of this study, we focus on the development of such catalysts based on earth abundant copper complexes. The water oxidation electrocatalysis and photocatalysis were investigated. The second part of the work concerns the ion pair formation between the oppositely double charged species of complex catalyst and electron acceptor and Photosensitizer and complex catalyst are investigated. This study should bring solid evidence on the influence of each component in photosystem through the ion pair association and dissociation. In the third part, we study a synthetic sensitizer-catalyst system that can photoactivate a water molecule bound to the catalytic unit through a two-electron, two-proton abstraction, performed all the photophysical characterization of the dyad. Therefore, studying molecular complexes for artificial photosynthesis provides diverse direction to develop the utilization efficiency of solar energy
Bazzan, Irene. „Molecular Catalysis towards Artificial Photosynthesis“. Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3424626.
Der volle Inhalt der QuelleIl 21° secolo appare come un momento di enorme incertezza per il settore energetico: un’energia sicura, pulita, continua ed equamente distribuita risulta necessaria per la crescita economica e lo sviluppo della società umana. Riuscire a trovare un’adatta alternativa ai combustibili fossili costituisce una sfida affascinante per l’avanzamento scientifico. Considerando diverse possibilità, le risorse rinnovabili sembrano essere in grado di rispondere meglio alla richiesta energetica e fra queste, l’energia solare è sicuramente la più sfruttabile, però deve essere raccolta, convertita e conservata. Ispirandosi alla Natura, la fotosintesi artificiale è una soluzione in grado di convertire efficientemente l’energia derivante dalla luce solare in combustibili alternativi come idrogeno o altre forme ridotte di carbonio. Questo sistema artificiale presenta una struttura articolata di eventi, che terminano con reazioni di ossidoriduzione che necessitano un’efficiente catalisi. All’interno del panorama descritto, questo progetto di tesi è quindi focalizzato nello sviluppo di nuovi sistemi molecolari basati su metalli abbondanti sulla superficie terrestre in grado di catalizzare processi redox coinvolti nella fotosintesi artificiale. Lo studio di sistemi foto indotti è stato privilegiato, poiché si avvicina maggiormente all’ attivazione da parte della luce di un ideale sistema artificiale. Inoltre, ispirandosi ai numerosi esempi presenti in letteratura, i catalizzatori considerati sono basati su strutture con centri attivi sia multi che mono metallici. Il lavoro è maggiormente focalizzato sulla reazione di ossidazione dell’acqua, considerata ancora la problematica maggiore nel processo di fotosintesi artificiale, ma sono stati presi in considerazione anche studi preliminari per la catalisi della reazione di riduzione di CO2. Inizialmente, un osso cluster di Cobalto, [Co4(μ3-O)4(μ-O2CCH3)4(pyridine)4] è stato esaminato come catalizzatore molecolare in un sistema foto attivato con Ru(bpy)32+ come fotosensibilizzatore e S2O82- come donatore sacrificale. La specie è stata caratterizzata mediante diverse tecniche analitiche e variando le proprietà elettroniche dei sostituenti, correlazioni fra la struttura e l’attività sono state investigate con voltammetria ciclica e laser flash fotolisi. Inoltre, un approccio sintetico volto alla modifica strutturale del catalizzatore è stato valutato per progettare diadi non covalenti tra la specie stessa e il fotosensibilizzatore sfruttando interazioni π−π. Altre specie ad alta nuclearità, contenenti Cobalto e con leganti totalmente inorganici (poliossometallati, POMs) sono stati valutati per la catalisi di ossidazione dell’acqua. In particolare i complessi [Co9(H2O)6(OH)3(PW9O34)3]16-, [Co6(H2O)30{Co9Cl2(OH)3(H2O)9(SiW8O31)3}]5- e [{Co4(OH)3PO4}4(PW9O34)4]16- sono stati investigati nel sistema foto attivato e con laser flash fotolisi. Interessanti informazioni di meccanismo sono state ottenute grazie allo studio di questi composti. Inoltre, durante il lavoro di tesi un nuovo composto basato su un unico atomo di Rame e un legante tetraazaciclotetradecano è stato proposto come catalizzatore per ossidazione dell’acqua. In particolare, la specie è stata caratterizzata nel sistema elettrochimico e la sua attività catalitica è stata valutata mediante voltammetria ciclica, elettrolisi ed esperimenti fotoelettrochimici. Con lo sguardo volto allo sviluppo di un dispositivo per water splitting attivato dalla luce solare, in questa tesi per la prima volta è stata esaminata una specie molecolare di Rame in combinazione con la luce. I risultati ottenuti sembrano aprire la strada a nuove linee di ricerca legate a specie molecolari di Rame con leganti macrociclici azotati. Infine, per quanto riguarda la catalisi della reazione di riduzione di CO2, un complesso di Rame con legante POM è stato selezionato, [Cu(SiW11O39)]6-, ed esperimenti di voltammetria ciclica sono stati effettuati per valutarne l’attività catalitica. Questo lavoro di tesi si propone di indicare un metodo di lavoro per ottenere una migliore comprensione dell’argomento trattato, attraverso l’ottimizzazione delle condizioni sperimentali e approfondimenti riguardanti il meccanismo dei processi in esame.
Yamamoto, Masanori. „Studies on Molecule‐Based Artificial Photosynthesis“. 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225562.
Der volle Inhalt der QuelleBerg, Katja E. „Bimetallic model compounds for artificial photosynthesis /“. Stockholm, 1997. http://www.lib.kth.se/abs98/berg0109.pdf.
Der volle Inhalt der QuelleLiu, Rui. „Nanostructured Semiconductors for High Efficiency Artificial Photosynthesis“. Thesis, Boston College, 2013. http://hdl.handle.net/2345/3160.
Der volle Inhalt der QuellePhotosynthesis converts solar energy and stores it in chemical forms. It is one of the most important processes in nature. Artificial photosynthesis, similar to nature, can provide us reaction products that can potentially be used as fuel. This process promises a solution to challenges caused by the intermitted nature of solar energy. Theoretical studies show that photosynthesis can be efficient and inexpensive. To achieve this goal, we need materials with suitable properties of light absorption charge separation, chemical stability, and compatibility with catalysts. For large-scale purpose, the materials should also be made of earth abundant elements. However, no material has been found to meet all requirements. As a result, existing photosynthesis is either too inefficient or too costly, creating a critical challenge in solar energy research. In this dissertation, we use inorganic semiconductors as model systems to present our strategies to combat this challenge through novel material designs of material morphologies, synthesis and chemical reaction pathways. Guided by an insight that a collection of disired properties may be obtained by combining multiple material components (such as nanostructured semiconductor, effective catalysts, designed chemical reactions) through heterojunctions, we have produced some advanced systems aimed at solving fundamental challenges common in inorganic semiconductors. Most of the results will be presented within this dissertation of highly specific reaction routes for carbon dioxide photofixation as well as solar water splitting
Thesis (PhD) — Boston College, 2013
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Álvarez, Prada Luis Ignacio. „Ruthenium and Platinum Nanoparticles For Artificial Photosynthesis“. Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673692.
Der volle Inhalt der QuelleLa creciente demanda energética, necesaria para cubrir las necesidades de una población cada vez más numerosa, ha acelerado el cambio climático en las últimas décadas, debido al empleo predominantemente de combustibles fósiles, que además de contaminantes son finitos y están mal distribuidos globalmente. Esto ha propiciado el interés por emplear energías más limpias. Así, tomando la naturaleza como ejemplo, surge la Fotosíntesis Artificial, una forma de almacenar la ingente energía solar que recibimos en la Tierra en forma de enlaces químicos en diferentes sustancias. Este proceso incluye, además de la oxidación de agua a dioxígeno, la reacción de reducción de protones y la reducción de CO2, obteniéndose, respectivamente, dihidrógeno y productos derivados del carbono como metano o metanol. En ambos casos se requiere el empleo de un catalizador para hacer el proceso eficiente, y un material fotoactivo que desencadene el proceso inducido por la luz. En el Capítulo I, se desarrolla aún más la problemática del cambio climático y el estado actual de los procesos de reducción de protones y CO2, señalando el empleo de semiconductores como el nitruro de carbono como material fotoactivo y de nanopartículas metálicas como catalizadores. Se destaca, además, el empleo del método organometálico para la preparación de estos catalizadores, en condiciones suaves de reacción y con un gran control sobre sus características físicas y químicas. En el Capítulo II, se exponen los objetivos de este trabajo, centrados en el diseño, caracterización multitécnica y uso de materiales basados en nanopartículas metálicas para llevar a cabo estos procesos. En el Capítulo III, se preparan nanopartículas de rutenio empleando diferentes ligandos como estabilizadores, observando diferencias en su actividad y estabilidad electrocatalítica en la reducción de protones, relacionados con sus propiedades y composición. En el Capítulo IV, se emplea carburo de nitrógeno grafítico mesoporoso (mpg-CN) como material fotoactivo para la reducción fotoinducida de CO2. Se comprueba el efecto que tiene la incorporación de nanopartículas de platino al semiconductor, mejorando notablemente la eficiencia y la selectividad del proceso. En el Capítulo V, vuelve a utilizarse mpg-CN pero con nanopartículas de rutenio y platino para la fotorreducción de protones. Las nanopartículas de rutenio se preparan de diferentes maneras, utilizando ligandos estabilizadores, materiales de carbono o directamente en el semiconductor. Se comprueba que, independientemente de la técnica, la eficiencia catalítica observada es similar en todos estos sistemas, y muy inferior a la obtenida con Pt. Las observaciones catalíticas se respaldan con estudios fotofísicos. En el Capítulo VI, se perparan nanopartículas de Pt soportadas en cuatro materiales de carbono diferentes (nanohorns y nanotubos de carbono, óxido de grafeno reducido y grafito), que son incorporadas a un sistema de detección electroanalítica, mostrándose eficaces para la detección de parabenos a niveles de ultratraza. Finalmente, en el Capítulo VII se exponen las conclusiones globales.
The increasing energy demand, necessary to meet the needs of the growing world population, has accelerated climate change in recent decades, due to the predominantly use of fossil fuels, which in addition to being pollutants are non-renewable and ill-distributed. This has aroused interest in cleaner energetic alternatives. Thus, taking Nature as an example, Artificial Photosynthesis emerges as a way to store the enormous amount of solar radiation received by the Earth, in the form of chemical bonds of a fuel. This process includes, besides the oxidation of water to dioxygen, the reduction of protons and the reduction of CO2, obtaining, respectively, dihydrogen and products derived from carbon such as methane or methanol. In both cases, the use of a catalyst is required to make the process efficient, and a photoactive material that triggers the process induced by light. Chapter I further develops the problem of climate change and the current state of the proton and CO2 reduction processes, pointing out the use of semiconductors such as carbon nitride as photoactive material and metallic nanoparticles as catalysts. In addition, the use of the organometallic method for the preparation of these catalysts is highlighted, under mild reaction conditions and with great control over their physical and chemical features. In Chapter II, the objectives of this work are exposed, centered on the design, multi-technique characterization and testing of materials based on metallic nanoparticles to carry out these processes. In Chapter III, ruthenium nanoparticles are prepared using different ligands as stabilizers, observing differences in their activity and electrocatalytic stability in the reduction of protons, related to their physical properties and composition. In Chapter IV, mesoporous graphitic nitrogen carbide (mpg-CN) is used as a photoactive material for photoinduced CO2 reduction. The effect of the loading of platinum nanoparticles to the semiconductor is tested, notably improving the efficiency and selectivity of the process. In Chapter V, mpg-CN is used again but with ruthenium and platinum nanoparticles for the photoreduction of protons. Ruthenium nanoparticles are prepared in different ways, using stabilizing ligands, carbon materials or directly deposited in the semiconductor. It is found that, regardless of the technique, the observed catalytic efficiency is similar in all these systems, and much lower than the performance of Pt. The catalytic observations are supported by photophysical studies. In Chapter VI, Pt nanoparticles supported on four different carbon materials (carbon nanohorns, carbon nanotubes, reduced graphene oxide and grahpite) are prepared and incorporated into an electroanalytical sensing platform, proving effective for the detection of parabens at ultra-trace levels. Finally, in Chapter VII the global conclusions are presented.
Universitat Autònoma de Barcelona. Programa de Doctorat en Química
GOBBATO, THOMAS. „Bio-inspired Nano-Architectures for Artificial Photosynthesis“. Doctoral thesis, Università degli Studi di Trieste, 2023. https://hdl.handle.net/11368/3041030.
Der volle Inhalt der QuelleAmong the possible technologies for artificial photosynthesis, photoelectrochemical cells possess the advantage to decouple the overall water splitting reaction into the related semi-reactions enabling the study and optimization of the single process. In this Thesis a novel approach towards artificial photosystems design has been reported. The quantasome approach is a unique bio-inspired design strategy that pair down to essentials the PSII mimicry by shaping an innovative supramolecular material with the essential components of the quantasome: a light-harvesting antenna and a catalytic reaction center embedded in a unique ensemble. Bonchio, Prato and co-workers reported the very first example of an artificial quantasome (QS), a supramolecular artificial photosystem designed for light-induced water oxidation reaction. This innovative material is composed of a bis-cationic perylene bisimide photosensitizer (PBI2+) and a deca-anionic state-of-the-art water oxidation catalyst (Ru4POM). The artificial quantasome assembly forms in water, exploiting the complementary electrostatic interactions and hydrophobic-hydrophilic properties of the two selected molecular building blocks resulting in a supramolecular material (QS) with a definite chromophore to catalyst stoichiometry of 5:1. The structural characterization of this artificial quantasome (QS) and its building blocks, using state-of-the-art techniques of scanning probe microscopy and electron microscopy, is reported. The experiments performed point out to a lamellar structure of the supramolecular material resembling the self-organization of the natural enzyme PSII. This project aimed also at the synthesis of new artificial photosystems, indeed innovative hydrophilic photosynthetic materials are obtained by a combined supramolecular and click-chemistry strategy. The designed synthetic procedure adopted relies on click-chemistry functionalization of the N-terminal positions of PBI scaffolds. The functionalization of the N-terminal positions of a PBI scaffold set the parallelism with the natural antennae, that via N-terminal loops interactions modulate the structure of PSII-LHCII supercomplexes. Both new chromophores PBIn-TEGlock and PBI-TEGunlock present and estimated potential of the excited state suitable to drive photo-assisted water oxidation. Moreover, the synthetic route here reported is envisaged to maintain the positive peripherical charges on the molecular structures obtained in order to exploit complementary electrostatic interaction with Ru4POM water oxidation catalyst (WOC). The interactions of these new antennae with Ru4POM WOC yield unprecedented artificial quantasomes (QS-TEGlock, QS-TEGunlock) with tetraethylene glycol (TEG) functionalization. Photoelectrocatalytic characterization of the new artificial quantasomes is reported by coupling the supramolecular materials with state-of-the-art “inverse opal” indium tin oxide (IO-ITO) substrates. IO architectures are selected because their structure is reported to promote internal light scattering, due to the intrinsic geometry of the 3D-photoconductive lattice. QS-TEGlock exhibits a superior response for all the conditions explored, reporting a 340% photocurrent enhancement with respect to QS. In order to decouple the hydrophilic effect of TEG terminals from their cross-linking impact photoelectrocatalytic characterization of QS-TEGunlock is achieved. It is found that the decoration of the PBI chromophores with TEG residues, with or without cross-linking, can leverage the quantasome hydration and facilitate water oxidation reaction. Formation of TEG-templated hydration shells is verified by Raman microscopy of water exposed photoanodes.11 The presence of TEG-templated hydration shells sets a parallelism with natural PSII water channels. The added value of TEG cross-linkers is probed under prolonged photoelectrolysis whereby the unlocked structure reports a major photocurrent loss with respect to the locked one.
Tran, Anh. „Ruthenium-manganese complexes as models for artificial photosynthesis /“. Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3169.
Der volle Inhalt der QuelleJohansson, Olof. „Ruthenium(II) Polypyridyl Complexes : Applications in Artificial Photosynthesis“. Doctoral thesis, Stockholm : Institutionen för organisk kemi, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-93.
Der volle Inhalt der QuellePIZZOLATO, ERICA. „New Molecules and Nano-materials for Artificial Photosynthesis“. Doctoral thesis, Università degli Studi di Trieste, 2017. http://hdl.handle.net/11368/2908179.
Der volle Inhalt der QuelleCECCONI, BIANCA. „Artificial Photosynthesis: Molecular Approaches for Photocatalytic Hydrogen Production“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/100472.
Der volle Inhalt der QuelleParra, Puerto Andrés. „Towards Artificial Photosynthesis: Photoelectrochemical CO2 Reduction to Solar Fuels“. Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/347965.
Der volle Inhalt der QuelleEsta tesis se ha desarrollado con el objetivo de probar el concepto de la reducción del dióxido de carbono a metano, mediante una reducción de los potenciales necesarios usando un mecanismo fotocatalítico. Parte de la energía solar es transferida a la reacción obteniendo una mejora en el balance energético total. El trabajo desarrollado se focaliza primero en el estudio de materiales nanoestructurados fotoactivos basados en dióxido de titanio obtenidos por anodización, generando nanotubos, y por síntesis hidrotermal obteniendo nanohilos sobre un sustrato conductor transparente, los cuales permiten obtener mayores superficies activas mejorando la colección de fotones, similar a las reacciones luminosas en la fotosíntesis. En segundo lugar, se ha estudiado la electroreducción del dióxido de carbono a metano usando cátodos de cobre y oxido de cobre (similar a las reacciones oscuras de la fotosíntesis). Usando el cobre como cátodo, se ha observado la obtención de metano a diferentes densidades de corriente aplicadas para poder observar la productividad respecto al potencial medido. Para el caso de los cátodos de óxido de cobre, no se ha encontrado producción de metano pero si de etileno. En estos cátodos se ha observado un efecto proveniente de la reducción de las capas de los diferentes óxidos de cobre, generados en la síntesis térmica, hacia un cobre catalíticamente activo para la reacción de reducción del dióxido de carbono. Este efecto se ha estudiado profundamente mediante un estudio de los cambios cristalográficos y superficiales a determinados tiempos. Finalmente, se ha estudiado el efecto de la humidificación del dióxido de carbono (gas) previa a la entrada a la celda electroquímica. Como parte final se ha realizado una evaluación energética de los fotoánodos generados por síntesis hidrotermal y de los cátodos basados en cobre estudiados, para poder implementar ambos en una celda fotoelectroquímica completa. En esta parte se ha estudiado los valores de los potenciales externos necesarios para que se pueda dar la reacción, asumiendo un 100% de eficiencia hacia la producción de metano para los cátodos de cobre y de etileno para los de óxido de cobre.
Goberna, Ferrón Sara. „Novel molecular catalysts for water oxidation: towards artificial photosynthesis“. Doctoral thesis, Universitat Rovira i Virgili, 2013. http://hdl.handle.net/10803/129180.
Der volle Inhalt der QuelleThe objective of this thesis is the development and characterization of new catalysts for the oxidation of water from metal complexes, especially first row transitionmetals. In the second chapter of this thesis we explore the homogeneous catalytic oxidation of water with a metal-metal bonded ruthenium compound [Ru2(μ-O2CCH3)4]. This catalyst is stabilized by available and inexpensive ligands, so it does not require the design of organic ligands. The third chapter of this thesis report the catalytic activity of a new cobalt compound based on polioxometalate chemistry [Co9(H2O)6(OH)3( HPO4 )2(PW9O34)3]16-( Co9). Our experiments show that this compound is a homogeneous catalyst for the oxidation of water produced chemically, induced by light or electrochemically. The fourth chapter of this thesis describes the preparation and characterization of a Prussian blue type polymer: cobalt hexacyanoferrate (CoHCF), which posses many of the key features necessaries for a viable WOC: it is formed from inexpensive metals, it works at neutral pH and ambient conditions and it is robust.
Gil, Sepulcre Marcos. „Ru, Co and Ca-based catalysts for artificial photosynthesis“. Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/462105.
Der volle Inhalt der QuelleArtificial photosynthesis offers a viable alternative to the actual energetic model based mainly in the consumption of fossil fuels. Trying to emulate the photosynthesis process in higher plants, this area of study attempts to use sunlight in order to produce electrons, protons and oxygen from water, with the aim of using the released electrons for producing hydrogen or other useful fuels. Within this context, the use of catalysts usually based in transition metals is necessary to make these two processes viable. The first chapter contains a brief introduction about the motivation for the research presented in this thesis. The most relevant general mechanistic aspects for water oxidation (WO) as well as proton reduction catalysis are also presented, giving a general view of most relevant catalysts reported to date. The second chapter is focused in the objectives of this work. The main goal of this PhD thesis is the synthesis and the structural and electrochemical characterization of a series of Ru, Co and Cu-based catalysts and the ulterior study of their reactivity towards water oxidation and/or proton reduction catalysis. The final objective is to fully understand the mechanistic pathways and the factors that affect their catalytic performance for helping in the future rational design of more efficient and robust catalysts. In the third chapter, the synthesis, characterization and reactivity of a new family of Ru complexes is presented. A series of detailed electrochemical, spectroscopic and kinetic studies allows the identification of new species formed after oxidation of the complexes in aqueous solution that proved to be key for further understanding their catalytic behavior in water oxidation. The fourth chapter presents the synthesis and characterization of a new family of Cu complexes. Their reactivity towards water oxidation has been studied and compared with that of the most relevant Cu-based WO catalysts reported in the literature. Finally, in the fifth chapter we present the deactivation of a CoII/CoIII molecular cluster after application of reductive potentials, giving rise to the formation of CoO or CoO(OH) nanoparticles deposited onto a glassy carbon electrode. The ability of these nanoparticles for reducing protons has been tested, and their catalytic performance discussed on the basis of the nature of the species obtained and their morphology . In the sixth chapter the most relevant conclusions of this work are discussed. Finally, the last chapter includes an annex containing other works that have been carried out and published during this PhD thesis and that are closely related with the work carried out during the PhD.
Tran, Anh. „Ruthenium-Manganese Complexes as Model Systems for Artificial Photosynthesis“. Doctoral thesis, KTH, Chemistry, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3169.
Der volle Inhalt der QuelleKarlsson, Susanne. „Single and Accumulative Electron Transfer – Prerequisites for Artificial Photosynthesis“. Doctoral thesis, Uppsala universitet, Kemisk fysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-122206.
Der volle Inhalt der QuelleAnderlund, Magnus. „Dinuclear Manganese Complexes for Artificial Photosynthesis : Synthesis and Properties“. Doctoral thesis, Stockholm : Dept. of organic chemistry, Stockholm university, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-396.
Der volle Inhalt der QuelleZhang, Haoyu. „Studies of zeolite-based artificial photosynthetic systems“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1203019490.
Der volle Inhalt der QuellePlanas, Roure Nora. „Ruthenium polypyridyl complexes relevant to the catalytic processes in artificial photosynthesis“. Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/33515.
Der volle Inhalt der QuelleArtificial photosynthesis seeks to functionally mimik the photosynthetic process carried out by nature, and combine the energy from the sun with water to obain a “solar” fuel like hydrogen. One of the strategies in the field, consists on a modular approach in which all the components needed are studied independently, in view of their future assembly in a final operative device. This thesis has been focused on the synthesis and characterization of a series of new mono and dinuclear ruthenium componud with polylpyridylic ligands. The aplication of these new compounds as catalysts in very important processes such as water oxidation and CO2 reduction has been studied. Additionally, the suprmolecular properties detected in the dinuclear compounds has been studied in great detail, which has been promoted by the direct implication of such type of interactions in the catalytic processes studied.
Stolper, Thorsten. „Theoretical Studies of Ru- and Re-based Catalysts for Artificial Photosynthesis“. Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://hdl.handle.net/11858/00-1735-0000-002E-E346-F.
Der volle Inhalt der QuelleBerglund, Baudin Helena. „Electron and Energy Transfer in Supramolecular Complexes Designed for Artificial Photosynthesis“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5033-4/.
Der volle Inhalt der QuelleWolpher, Henriette. „Ruthenium(II) polypyridyl complexes in supramolecular systems relevant to artificial photosynthesis /“. Stockholm : Department of Organic Chemistry, Ahrrenius Laboratory, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-417.
Der volle Inhalt der QuelleStephani, Carolynn Kay. „Artificial Photosynthesis: An Investigation of Silicon Nanowires in Nickel Catalyzed Carboxylation“. Thesis, Boston College, 2014. http://hdl.handle.net/2345/3863.
Der volle Inhalt der QuelleThesis advisor: Dunwei Wang
Silicon nanowires are utilized to harvest the energy from visible light. The introduction of a nickel pre-catalyst, 1, allows for this energy to be stored in chemical bonds, which are subsequently used in the carboxylation of 4-octyne
Thesis (MS) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Arismendi, Romero Graciela. „Photosystem II and artificial photosynthesis: looking for an alternative energy source“. Revista de Química, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/99765.
Der volle Inhalt der QuelleWith the elucidation of the crystal structure of photosystemII (PSII), an important step in the search for new environmentally friendly energy alternatives has been taken. The attempt to imitate the characteristic reaction of photosynthesis (in order to manufacture ecologically friendly fuels) could represent a new opportunity to reduce our dependence on fossil fuels.
Zhang, Ketian. „Mixed ion and electron conducting polymer composite membranes for artificial photosynthesis“. Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121607.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Inspired by the fact that OH- has a very high mobility in water, highly conductive OH⁻conducting membranes were developed for alkaline water electrolysis. The membranes were semi-interpenetrating networks of crosslinked poly(vinyl alcohol) (PVA) and a polycation miscible with PVA. It is analogous to aqueous strong base solution. The polycation is a OH- containing polymer; PVA solvates this polycation and facilitates the ion conduction via Grotthuss mechanism. The membrane with proper composition has an exceptionally high OH⁻ conductivity of 151 mS/cm, 6.51 times as high as the commercial membrane Neosepta AHA. At the same time, the hydrogen bonds and covalent crosslinks in the system give this membrane a high tensile strength of 41 MPa in the wet state, 46% higher than the Neosepta AHA membrane. Insight in the ion conduction mechanism was gained by spectroscopic studies and the measurement of OH- conduction activation energy.
This material system is also highly anion perm-selective, a feature critical to sustaining the pH gradient in bipolar membrane based artificial photosynthesis devices. A highly transparent mixed proton and electron conducting membrane was developed. The Nafion and reduced graphene oxide (rGO) were chosen as the proton conducting polymer matrix and the electrically conductive filler respectively. The filler has a high aspect ratio. As predicted by simulations, it will have low percolation threshold if homogeneously dispersed. To achieve this homogeneity, water-aided mixing was employed followed by fast freezing in liquid nitrogen. Though rGO is a light absorber, the extremely low percolation threshold (0.1%) allows us to achieve sufficient electrical conductivity with only a small volume fraction of rGO. Therefore, the membrane was highly transparent in addition to its ability to conduct both electrons and protons.
Detailed modeling of the energy loss from conduction, light absorption, and gas crossover was conducted, showing that this material system is promising for the artificial photosynthesis application.
by Ketian Zhang.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Wang, Xia. „Artificial Photosynthesis : Carbon dioxide photoreduction and catalyst heterogenization within solid materials“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLET025/document.
Der volle Inhalt der QuelleIn the context of global warming and the necessary substitution of renewable energies (solar and wind energy) for fossil fuels, efficient energy-storage technologies need to be urgently developed. Recently, energy storage via the reduction of CO2 has seen renewed interest. Although reduction of CO2 into energy-dense liquid or gaseous fuels is a fascinating fundamental issue, its practical implementation in technological devices is highly challenging due to the high stability of CO2 and thus the endergonic nature of its transformation. Furthermore, the reactions involve multiple electrons and protons and thus require efficient catalysts to mediate these transformations.The objective of this thesis is to investigate different strategies for the storage of solar energy in chemical compounds, through visible-light-driven CO2 reduction. This thesis comprises of two main parts. After an introduction, the first part describes the investigation of homogeneous catalysts in combination with a photosensitizer, either separately or connected covalently. Due to the easily-tunable synthesis and facile characterization of molecular catalysts, homogeneous photosystems are more controllable and can give deep insight into product selectivity and mechanistic issues.With regards to future applicability, however, homogeneous catalysis often suffers from additional costs associated with solvents, product isolation and catalyst recovery, amongst other factors. The integration of molecular catalysts into solid platforms offers the possibility to maintain the advantageous properties of homogeneous catalysts while moving towards practical system designs afforded by heterogeneous catalysis. The second part of this thesis is therefore the immobilization of molecular catalysts within solid materials, namely MOFs and PMO. The ultimate goal of this thesis is to incorporate both catalyst and photosensitizer into the solid support
GALLONI, PIERLUCA. „Construction of electron-active complex systems as model for artificial photosynthesis“. Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2004. http://hdl.handle.net/2108/202905.
Der volle Inhalt der QuelleArtificial photosynthesis is an ambitions target of modern science that obviously requires a complete understanding of natural photosynthesis. The understanding of all steps involved is one of the most important topic in chemical, biological, and physical research. The study of electron transfer reaction between donor and acceptor molecules is a crucial key point, both for development of artificial photosynthesis and for application in electronic devices and photosensible materials. The aim of this thesis was to investigate electron and energy transfer reactions, as source of information about the mechanisms that rule this complex reaction, using different donor-acceptor systems, among which attention have been focused at C60 as acceptor and ferrocene as donor. Synthetic work constituted a major task in this thesis, requiring several attempts in order to optimize reaction conditions, purification procedures and full characterization of products. A number of new compounds was obtained together with improved yields of known products. Another important aspect of the work involved investigation of donor-acceptor interaction in some of the dyads, both in ground and in excited states. Among all the results, the most significant ones may be summarized in the following points. a) A peculiar behaviour emerged from photophysical and computational experiments, electronic spectra and electrochemical measurements of fluorene-fullerene dyads. Different interaction was the result of changing the position through which the two moieties are connected. b) Very interesting results emerged when a frozen structure was obtained from connecting ferrocene and fullerene moieties in a rigid assembly. In fact, in comparison with a dyad with flexible connection, a faster electron transfer rate - and therefore an enhanced interaction - was observed in the excited state. c) Efficient energy transfer was observed with supramolecular (ZnSalen)-(N-methyl-2-pyridyl-[3,4]fulleropyrrolidine) dyads. This system can be used as a good model for light harvesting model. d) Very efficient electron transfer reaction occurred between zinctetraferrocenylporphyrin and pyridylfulleropyrrolidine in supramolecular (ZnFc4Porph)-(N-methyl-2-pyridyl-[3,4]-fulleropyrrolidine) dyad, as observed by transient spectroscopy, even in non polar solvent such as toluene. In conclusion, new good systems for energy an electron transfer were obtained and investigated by different approaches. They can be used to reach a deeper knowledge of complex phenomena that rule natural photosynthesis as well as to build photosensible devices.
Lim, Gary Lloyd Nogra. „Elucidation of Photoinduced Energy and Electron Transfer Mechanisms in Multimodular Artificial Photosynthetic Systems“. Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984185/.
Der volle Inhalt der QuelleHegner, Franziska Simone. „Experimental and theoretical investigation of Prussian blue-type catalysts for artificial photosynthesis“. Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/666291.
Der volle Inhalt der QuelleBachmeier, Andreas S. J. L. „Metalloenzymes as inspirational electrocatalysts for artificial photosynthesis : from mechanism to model devices“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:eb1e648d-3a55-48ee-bd6e-c3212e65bac0.
Der volle Inhalt der QuelleLee, Hyunjung. „DESIGN AND PHOTOCHEMICAL STUDIES OF ZEOLITE-BASED ARTIFICIAL PHOTOSYNTHETIC SYSTEMS“. The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1039117753.
Der volle Inhalt der QuelleDe, Tovar Villanueva Jonathan. „Pd and Co-based (nano)catalysts for C-C coupling and artificial photosynthesis“. Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/565829.
Der volle Inhalt der QuelleBerggren, Gustav. „Mimicking nature synthesis and characterisation of manganese complexes of relevance to artificial photosynthesis /“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108526.
Der volle Inhalt der QuelleNIORETTINI, Alessandro. „Electroreduction of carbon dioxide over nanostructured metallic cathodes: a route towards artificial photosynthesis“. Doctoral thesis, Università degli studi di Ferrara, 2023. https://hdl.handle.net/11392/2504901.
Der volle Inhalt der QuelleThe level of carbon dioxide in the atmosphere is constantly growing mainly due to anthropogenic activities causing the well known greenhouse effect that represent one of the greatest challenges to contemporary society. On this regard electroreduction of CO2 represents an appealing strategy to rethink a waste and an environmentally dangerous product as an innovative feedstock for the formation of value-added carbon neutral compounds. Among metal electrodes able to catalyze such process, copper plays a central role. The work of this thesis focuses into the development of new and innovative strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying with heterometals. One of the more investigated nanostructuring strategies consist in the controlled formation of Cu oxides, which then undergo to a re-reduction in CO2R conditions. Several strategies have been reported for the oxidation of Cu foils’ surface. In this contribution, are reported straightforward electrochemical methods for the formation of Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction, leading to the selective production of Syngas with efficiencies that exceed 70% only for carbon monoxide, whose composition varies upon changing the applied bias and Indium content. Literature examples of copper-indium nanostructured catalysts for CO2R are now still limited.[5] In particular, the proposed Cu-In cathode in this work is able to efficiently catalyze gaseous mixtures compatible with the Fischer-Tropsch synthesis of methanol or aldehydes, that are produced at a relative low (i.e. -1.3 V vs SCE up to -1.6 V vs SCE) applied bias with the development of interesting stable current densities. During this research work was investigated the co-functionalization of also other metallic species than indium such as Cerium that was able to drive the selectivity of the copper interface towards an enhanced production of methane (up to 40% in faradic efficiency). Furthermore, thanks to a collaboration with the Milan University a detailed study of gold nanostructures deposited via PLD on FTO substrates was also performed leading to the development of a particularly efficient electrocatalyst for the production of Syngas and formic acid. In particular with the pulsed laser deposition it was possible to generate particular nanostructures that are not achievable by standard synthetic methodologies, two of these were found to be interesting in terms of catalytic performance. In fact the study was centered into the description of a columnar cathodic interface and a “foam” like surface, the latter was the most interesting due to it’s selectivity towards a Syngas mixture of 40% CO and 60% H2 at a low applied bias of -1.1V vs SCE, ideal for the synthesis of hydrocarbons with a wide range of molecular weight. The work described in this thesis leads to the publications in multiple scientific journal and the deposition of an Italian and European patent due to the collaboration of interested industries in the application of this know how, on this regard also a lot of specific studies were carried out with the aim of clarify the technoeconomic potential of this technology and the possibility to scale up from the laboratory scale to a plant simulation not only in theory but also with the design and development of larger electrochemical cells and setup.
Bruce, Jared. „Surface Functionalization of Silicon Microwires for Use in Artificial Photosynthetic Devices“. American Chemical Society, 2014. http://hdl.handle.net/1993/30301.
Der volle Inhalt der QuelleMongwaketsi, Nametso Precious. „Studies on porphyrin-based nanorods for artificial light harvesting applications“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86772.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The work presented in this thesis throws light on the supramolecular approach in exploration of bi-porphyrin nanorods system wherein self-assembly plays an important role. Porphyrin based nanorods were synthesized via self-assembly of meso-tetrakis (4-phenylsulfonicacid) porphyrin dihydrochloride and Sn (IV) tetrakis (4-pyridyl) porphyrin. Understanding the sizes and growth mechanism of the porphyrin nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of the porphyrin nanorods by ionic self- assembly. This study demonstrated that aggregates of the di- acid form of meso-tetrakis (4-phenylsulfonic acid) porphyrin dihydrochloride and Sn (IV) tetrakis (4-pyridyl) porphyrin resulted in porphyrin nanorods with diameters between 20 nm and 60 nm, and μm in lengths. Enhanced optical properties illustrated the potential for slightly modifying the method of synthesis to influence the physical and optical properties of porphyrin nanorods. The porphyrin nanorods reflectance data demonstrated that these structures are good absorbers of light and therefore could potentially be used to harvest light. The nonlinear optical (NLO) properties of the porphyrin nanorods were investigated for the first time in this study by second and third harmonic generation techniques. Such study was influenced by the fact that porphyrins have great thermal stability and extended -conjugated macro cyclic ring which give them large nonlinear optical effects. The NLO results showed that the porphyrin nanorods may have many potential uses in photonic applications due to larger third order nonlinear susceptibility. Single molecule spectroscopy was also used to investigate the dynamics of intermolecular and intramolecular processes. Porphyrin nanorods were incorporated into polymer matrices to achieve an arrangement where they can be directly used as a device. The assembly of porphyrin nanorods on track-etched membranes was achieved through altering the surface charge of the respective membranes. Porphyrin nanorods-polymer composites were produced using latex technology and electrospinning techniques. The fibres were characterized with respect to morphology and optical properties.
AFRIKAANSE OPSOMMING: Die werk wat in hierdie tesis beskryf word werp lig op die supramolekulêre benadering in die ondersoek van bi-porfirien nano-silinders waarin self-versameling ‘n belangrike rol speel. Porifirien nano-silinders was voorberei via self-versameling van meso-tetrakis(4-feniel sulfoonsuur) porfirien dihidrochloried en Sn (IV) terakis (4-piridiel) porfirien. Dit is belangrik om die meganismes wat verband hou met die groei en grootte van die nano-silinder struktuur te ondersoek. Dit het ‘n invloed op die self-versameling asook die uiteindelike toepassing. Spectroskopiese en mikroskopiese studies was uitgevoer om die effek van tyd, konsentrasie en oplosmiddel op die selfversamelling te bestudeer. Die studie dui daarop dat bondels van die disuur vorm van meso-tetrakis(4-feniel sulfoonsuur) porfirien dihidrochloried en Sn (IV) terakis (4-piridiel) porfirien het gelei tot porfirien nano-silinders met lengtes tussen 20 nm en 60 nm asook in die mikro meter skaal. Verhoogde optiese eienskappe het die potensiaal om effense veranderinge in die metode om die nano-silinders voor te berei om sodoende ‘n groter invloed op die fisiese en optiese einskappe te hê. Die reflektansie data wys dat hierdie strukture goeie absorbsies van lig toon en daarom geskik sal wees om lig te stoor. Die nie-liniêre optisie (NLO) eienskappe van die profirien nano-silinders was vir die eerste keer ondersoek deur middel van tweed en derde hormoniese generasie tegnieke. Hierdie studie was beïnvloed deur die feit dat porfiriene goeie stabiliteit by hoë temperatuur en ‘n verlengde -gekonjugeerde makro-sikliese ring bevat wat dan groot nie-liniêre optiese effekte gee. Die NLO resultate wys dat die profirien nano-silinders groot potensiaal het in die gebruik van fotoniese toepassings as gevolg van derde orde nie-liniêre vatbaarheid. Enkel molekuul spektroskopie was ook gebruik om die dinamika van intermolekulêre en intramolekulêre prosesse te ondersoek. Porfirien nano-silinders was geïnkorporeer in polimeer matrikse om ‘n eweredige verspreiding te verkry en om direk as ‘n toestel te gebruik. Die versameling van porfirien nano-silinders op baan-ingeëtse membrane was bereik deur die verandering in oppervlak lading van die membrane. Porfirien nano-silinder / polimeer samestellings was verkry deur lateks tegnologie en elektrospin tegnieke. Die vesels was gekarakteriseer in terme van morfologie en optiese eienskappe.
Abrahamsson, Malin L. A. „Electron Transfer in Ruthenium-Manganese Complexes for Artificial Photosynthesis : Studies in Solution and on Electrode Surfaces“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5154-3/.
Der volle Inhalt der QuelleMirmohades, Mohammad. „Insight into Catalytic Intermediates Relevant for Water Splitting“. Doctoral thesis, Uppsala universitet, Fysikalisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281447.
Der volle Inhalt der QuelleBorgström, Magnus. „Controlling Charge and Energy Transfer Processes in Artificial Photosynthesis : From Picosecond to Millisecond Dynamics“. Doctoral thesis, Uppsala University, Department of Physical Chemistry, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6017.
Der volle Inhalt der QuelleThis thesis describes an interdisciplinary project, where the aim is to mimic the initial reactions in photosynthesis. In photosynthesis, the absorption of light is followed by the formation of charge-separated states. The energy stored in these charge-separated states is further used for the oxidation of water and reduction of carbon dioxide. In this thesis the photo-induced processes in a range of supramolecular complexes have been investigated with time resolved spectroscopic techniques. The complexes studied consist of three types of units; photosensitizers (P) capable of absorbing light, electron acceptors (A) that are easily reduced and electron donors (D) that are easily oxidised. Our results are important for the future design of artificial photosystems, where the goal is to produce hydrogen from light and water.
Two molecular triads with a D-P-A architecture are presented. In the first one, a photo-induced charge-separated state was formed in an unusually high yield (φ>90%). In the second triad, photo-irradiation led to the formation of an extremely long-lived charge-separated state (τ = 500 ms at 140K). This is also the first synthetically made triad containing a dinuclear manganese unit as electron donor.
Further, two sets of P-A dyads are presented. In both, the expected photo-induced reduction of the electron acceptor is diminished due to competing energy transfer to the triplet state of the acceptor.
Finally, a P-P-A complex containing two separate photosensitizers is described. The idea is to produce high-energy charge-separated states by using the energy from two photons.
Borgström, Magnus. „Controlling charge and energy transfer processes in artificial photosynthesis : from picosecond to millisecond dynamics /“. Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6017.
Der volle Inhalt der QuelleMoberg, Simon. „Artificial photosynthesis - 4-Aminobenzoic acids effect on charge transfer in a photo catalytic system“. Thesis, Uppsala universitet, Materialteori, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-390835.
Der volle Inhalt der QuelleArtificiell fotosyntes används för att absorbera solenergi och förvara den i formen av kemiska bindningar. Systemet som används i denna studie gör detta genom att splittra vatten till vätgas och syrgas genom en plasmon assisterad process. Detta är ett förnyelsebart sätt att förvara energi och kan användas som ett alternativ till fossila bränslen. I denna studie studeras en liten del utav detta fotokatalytiska system nämligen interaktionen där plasmonaktiva silvernanopartiklar (Ag NPs) överför foto-exciterade elektroner genom molekyllänken 4-aminobensoesyra (pABA). Molekyllänken pABA överför laddning från silverytan till en halvledare och en katalys som utför splittringen av vattnet. pABA kan binda på olika sätt tillen silveryta och denna studie syftar till att undersöka vilken utav bindningarna som är starkast och vilken som effektivast överför laddning. För att göra detta simulerades tre system kvantmekaniskt med hjälp av en superdator, ett system för varje sorts bindning. Den totala fria energin av systemen beräknades och jämfördes. Av de tre undersökta bindningarna hadehollow-site bindningen (pABA som binder till tre silveratomer) längst energi, vilket betyder att det är den starkaste av bindningarna. Utöver detta så visade det sig att bandgapet (energin som krävs för att överföra laddning) minskade för pABA när den var bunden till Ag-ytan. Hollow-site bundet pABA hade även minst bandgap, vilket betyder att den kräver minst energi för att överföra laddning och är därmed den mest effektiva bindningen för det fotokatalytiska systemet.
LUISA, ALESSANDRA. „Metallo-porphyrins: key active players in molecular artificial photosynthesis and homogeneous photocatalytic hydrogen production“. Doctoral thesis, Università degli Studi di Trieste, 2016. http://hdl.handle.net/11368/2908012.
Der volle Inhalt der QuelleOzcan, Ozlem. „Artificial Photosynthesis: Dye Assisted Photocatalytic Reduction Of Carbon Dioxide Over Pure And Platinum Containing Titania“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606313/index.pdf.
Der volle Inhalt der Quelle&ndash
bipyridyl) ruthenium (II) chloride hexahydrate) , BrGly (1,7-dibromo-N,N&rsquo
-(t-butoxycarbonyl-methyl)-3,4:9,10-perylene-diimide) and BrAsp (1,7-dibromo-N,N&rsquo
-(S-(1-t-butoxy-carbonyl-2-t-butoxycarbonyl-methyl)-ethyl)- 3,4:9,10-perylenediimide). Their SEM, XRD, UV-Vis spectroscopy and hydrogen chemisorption characterizations are performed. Reaction tests are performed for the catalysts under UV and visible light. The only quantifiable reaction product was methane. With RuBpy containing catalysts hydrogen production was observed under UV light, but not quantified. The results indicated that Pt addition resulted in higher yields in UV experiments. The presence of light harvesting molecules resulted in increase in photocatalytic activity for thin films, whereas it resulted in no change or decrease for the thick films. The latter case may occur due to the UV filtering effect of these dyes. Use of dyes (with visible range absorption bands) as promoters made visible light excitation possible. This resulted in photocatalytic activity under visible light, which was not observed with unpromoted and Pt promoted TiO2 thin film catalysts. Under visible light methane was the only quantified photoreduction product. CO evolution was also observed, but not quantified. The photocatalytic activities of the dye promoted TiO2 were in the order of RuBpy~BrAsp>
BrGly. The methane yields of visible light experiments were one order of magnitude lower than the ones under UV light.
Lippert, Cameron A. „Redox-active ligand-mediated radical coupling reactions at high-valent oxorhenium complexes: reactions relevant to water oxidation for artificial photosynthesis“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41199.
Der volle Inhalt der QuelleNATALI, Mirco. „SUPRAMOLECULAR SYSTEMS FOR ARTIFICIAL PHOTOSYNTESIS“. Doctoral thesis, Università degli studi di Ferrara, 2014. http://hdl.handle.net/11392/2389046.
Der volle Inhalt der QuelleKarlsson, Erik. „Catalysts for Oxygen Production and Utilization : Closing the Oxygen Cycle: From Biomimetic Oxidation to Artificial Photosynthesis“. Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-56917.
Der volle Inhalt der QuelleAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted.
Thorne, James E. „Understanding the Limitations of Photoelectrochemical Water Splitting“. Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108257.
Der volle Inhalt der QuelleArtificial photosynthesis is achieved by placing a semiconductor in water, where photoexcited charges generate a photovoltage at the surface of the semiconductor. However, solar to fuel efficiencies of earth abundant metal oxides and metal nitrides remain limited by their low photovoltages. Many different treatments have been used to improve the photovoltages of semiconductors, such as photocharging, surface regrowths, or the addition of heterogeneous catalysts. However, in these treatments, it remains unclear whether the enhanced photovoltage arises from improved kinetics or energetics. In many of the following studies, the surface kinetics of different semiconductors are measured in order to quantify how surface kinetics are related to the photovoltage of these materials. Different spectroscopic measurements are made along with detailed analysis of the Fermi level and quasi Fermi level in order to corroborate the kinetic data with energetic data. Together, this dissertation explores a multitude of methods and procedures that demonstrate how the photovoltage of semiconductors can be understood and manipulated for photoelectrochemial artificial photosynthesis
Thesis (PhD) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
Thomas, Michael Brandon. „Donor-Acceptor Systems: Photochemistry and Energy Harvesting Applications“. Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703335/.
Der volle Inhalt der QuelleNeupane, Bhanu. „Excited state electronic structure, excitation energy transfer, and charge separation dynamics in various natural and artificial photosynthetic systems containing zinc and magnesium chlorins“. Diss., Kansas State University, 2011. http://hdl.handle.net/2097/13105.
Der volle Inhalt der QuelleDepartment of Chemistry
Ryszard J. Jankowiak
This dissertation reports the low temperature frequency domain spectroscopic study of three different natural pigment protein complexes and one artificial antenna system. The main focus of this work is to better understand electronic structure, excitation energy transfer (EET), and electron transfer (ET) dynamics in these systems that could have impact on achieving higher efficiency in future artificial solar cells. In the first part of this dissertation, electronic structure and EET pathways in isolated intact CP43 prime protein complex, which is isolated from Cyanobacterium synechocystis PCC 6803 grown under iron stressed conditions, are investigated using low-temperature absorption, fluorescence, fluorescence excitation, and hole-burning (HB) spectroscopies. This work suggests that, in analogy to the CP43 complex of PSII core, CP43 prime possesses two quasi-degenerate low energy states, A prime and B prime. The various low-temperature optical spectra are fitted considering an uncorrelated EET model. This work suggests that for optimal energy transfer from CP43 prime to PSI, the A prime and B prime state chlorophylls belonging to each CP43 prime should face towards the PSI core. The second part of dissertation reports the photochemical HB study on novel Zinc bacterial reaction center (Zn-RC) from Rhodobacter sphaeroides and its β-mutant (Zn-β-RC). This study shows that ET in the two samples is similar; however, the quantum efficiency of charge separation in the mutant decreases by 60 %. This finding suggests that the coordination state of the HA site zinc bacteriochlorophyll does not tune the active branch ET. Simultaneous fits of various optical spectra using experimentally determined inhomogeneity provides more reliable electron phonon coupling parameters for the P870 state of both RC samples. In the last part of this dissertation, EET in a novel artificial antenna system (ethynyl linked chlorophyll trefoil, ChlT1) is investigated. EET time in ChlT1 is ~2 ps. ChlT1 in MTHF/ethanol glass forms four different types of aggregates, A1-A4. The EET time in A1 and A2 type aggregates slows down only by a factor of 5 and 7, respectively. This study suggests that ChlT1 and its aggregates can be used as efficient antenna systems in designing organic solar cells.
Song, Baiyun. „Studies on High Potential Porphyrin-fullerene Supramolecular Dyads“. Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407825/.
Der volle Inhalt der Quelle