Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Artificial photosynthesis.

Zeitschriftenartikel zum Thema „Artificial photosynthesis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Artificial photosynthesis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

INOUE, Haruo. „Photosynthesis and Artificial Photosynthesis“. Journal of The Institute of Electrical Engineers of Japan 138, Nr. 9 (01.09.2018): 590–93. http://dx.doi.org/10.1541/ieejjournal.138.590.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Suzuki, Takamasa. „Artificial photosynthesis“. Young Scientists Journal 6, Nr. 13 (2013): 20. http://dx.doi.org/10.4103/0974-6102.107614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

IMAHORI, Hiroshi. „Artificial Photosynthesis“. TRENDS IN THE SCIENCES 16, Nr. 5 (2011): 26–29. http://dx.doi.org/10.5363/tits.16.5_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gust, Devens, Thomas A. Moore und Ana L. Moore. „Artificial photosynthesis“. Theoretical and Experimental Plant Physiology 25, Nr. 3 (2013): 182–85. http://dx.doi.org/10.1590/s2197-00252013005000002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Calvin, Melvin. „Artificial photosynthesis“. Journal of Membrane Science 33, Nr. 2 (September 1987): 137–49. http://dx.doi.org/10.1016/s0376-7388(00)80373-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Benniston, Andrew C., und Anthony Harriman. „Artificial photosynthesis“. Materials Today 11, Nr. 12 (Dezember 2008): 26–34. http://dx.doi.org/10.1016/s1369-7021(08)70250-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stokes, Trevor. „Artificial photosynthesis“. Trends in Plant Science 6, Nr. 2 (Februar 2001): 52. http://dx.doi.org/10.1016/s1360-1385(01)01879-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Najafpour, Mohammad Mahdi, Robert Carpentier und Suleyman I. Allakhverdiev. „Artificial photosynthesis“. Journal of Photochemistry and Photobiology B: Biology 152 (November 2015): 1–3. http://dx.doi.org/10.1016/j.jphotobiol.2015.04.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Calzaferri, Gion. „Artificial Photosynthesis“. Topics in Catalysis 53, Nr. 3-4 (04.12.2009): 130–40. http://dx.doi.org/10.1007/s11244-009-9424-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Harriman, Anthony. „Artificial photosynthesis“. Journal of Photochemistry and Photobiology A: Chemistry 51, Nr. 1 (Februar 1990): 41–43. http://dx.doi.org/10.1016/1010-6030(90)87039-e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Allakhverdiev, S. I. „ALTERNATIVE ENERGY AND ARTIFICIAL PHOTOSYNTHESIS“. Вестник Российской академии наук 93, Nr. 9 (01.09.2023): 895–904. http://dx.doi.org/10.31857/s0869587323090037.

Der volle Inhalt der Quelle
Annotation:
Limited reserves of fossil fuels and the negative impact of their combustion products on the environment are two pressing problems of our time. The development of alternative energy sources, among which solar energy is the most accessible, is considered as a possible solution. Acquisition of skills of its effective and environmentally friendly use by creating artificial photosynthetic systems imitating the processes of natural photosynthesis, as well as the use of artificial photosynthesis for the production of biofuels can contribute to a way out of the current situation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Nango, Mamoru, und Miwa Sugiura. „Photosynthesis and artificial photosynthesis research“. Research on Chemical Intermediates 40, Nr. 9 (15.10.2014): 3163–68. http://dx.doi.org/10.1007/s11164-014-1823-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Machín, Abniel, María Cotto, José Ducongé und Francisco Márquez. „Artificial Photosynthesis: Current Advancements and Future Prospects“. Biomimetics 8, Nr. 3 (09.07.2023): 298. http://dx.doi.org/10.3390/biomimetics8030298.

Der volle Inhalt der Quelle
Annotation:
Artificial photosynthesis is a technology with immense potential that aims to emulate the natural photosynthetic process. The process of natural photosynthesis involves the conversion of solar energy into chemical energy, which is stored in organic compounds. Catalysis is an essential aspect of artificial photosynthesis, as it facilitates the reactions that convert solar energy into chemical energy. In this review, we aim to provide an extensive overview of recent developments in the field of artificial photosynthesis by catalysis. We will discuss the various catalyst types used in artificial photosynthesis, including homogeneous catalysts, heterogeneous catalysts, and biocatalysts. Additionally, we will explore the different strategies employed to enhance the efficiency and selectivity of catalytic reactions, such as the utilization of nanomaterials, photoelectrochemical cells, and molecular engineering. Lastly, we will examine the challenges and opportunities of this technology as well as its potential applications in areas such as renewable energy, carbon capture and utilization, and sustainable agriculture. This review aims to provide a comprehensive and critical analysis of state-of-the-art methods in artificial photosynthesis by catalysis, as well as to identify key research directions for future advancements in this field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Zhang, Chunxi. „From natural photosynthesis to artificial photosynthesis“. SCIENTIA SINICA Chimica 46, Nr. 10 (06.09.2016): 1101–9. http://dx.doi.org/10.1360/n032016-00073.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Chen, Rong, Lili Wan und Jingshan Luo. „Extraterrestrial artificial photosynthesis“. Joule 6, Nr. 5 (Mai 2022): 944–46. http://dx.doi.org/10.1016/j.joule.2022.04.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Gaut, Nathaniel J., und Katarzyna P. Adamala. „Toward artificial photosynthesis“. Science 368, Nr. 6491 (07.05.2020): 587–88. http://dx.doi.org/10.1126/science.abc1226.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Berardi, Serena, Samuel Drouet, Laia Francàs, Carolina Gimbert-Suriñach, Miguel Guttentag, Craig Richmond, Thibaut Stoll und Antoni Llobet. „Molecular artificial photosynthesis“. Chem. Soc. Rev. 43, Nr. 22 (2014): 7501–19. http://dx.doi.org/10.1039/c3cs60405e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Mao, Samuel S., und Shaohua Shen. „Catalysing artificial photosynthesis“. Nature Photonics 7, Nr. 12 (28.11.2013): 944–46. http://dx.doi.org/10.1038/nphoton.2013.326.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Imahori, Hiroshi, Yukie Mori und Yoshihiro Matano. „Nanostructured artificial photosynthesis“. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, Nr. 1 (April 2003): 51–83. http://dx.doi.org/10.1016/s1389-5567(03)00004-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Gust, Devens, Thomas A. Moore und Ana L. Moore. „Realizing artificial photosynthesis“. Faraday Discuss. 155 (2012): 9–26. http://dx.doi.org/10.1039/c1fd00110h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Beer, Robert, Gion Calzaferri, Jianwei Li und Beate Waldeck. „Towards artificial photosynthesis“. Coordination Chemistry Reviews 111 (Dezember 1991): 193–200. http://dx.doi.org/10.1016/0010-8545(91)84024-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Samyn, Pieter, Vibhore Kumar Rastogi, Neelisetty Sesha Sai Baba und Jürgen Van Erps. „Role of Nanocellulose in Light Harvesting and Artificial Photosynthesis“. Catalysts 13, Nr. 6 (08.06.2023): 986. http://dx.doi.org/10.3390/catal13060986.

Der volle Inhalt der Quelle
Annotation:
Artificial photosynthesis has rapidly developed as an actual field of research, mimicking natural photosynthesis processes in plants or bacteria to produce energy or high-value chemicals. The nanocelluloses are a family of biorenewable materials that can be engineered into nanostructures with favorable properties to serve as a host matrix for encapsulation of photoreactive moieties or cells. In this review, the production of different nanocellulose structures such as films, hydrogels, membranes, and foams together with their specific properties to function as photosynthetic devices are described. In particular, the nanocellulose’s water affinity, high surface area and porosity, mechanical stability in aqueous environment, and barrier properties can be tuned by appropriate processing. From a more fundamental viewpoint, the optical properties (transparency and haze) and interaction of light with nanofibrous structures can be further optimized to enhance light harvesting, e.g., by functionalization or appropriate surface texturing. After reviewing the basic principles of natural photosynthesis and photon interactions, it is described how they can be transferred into nanocellulose structures serving as a platform for immobilization of photoreactive moieties. Using photoreactive centers, the isolated reactive protein complexes can be applied in artificial bio-hybrid nanocellulose systems through self-assembly, or metal nanoparticles, metal-organic frameworks, and quantum dots can be integrated in nanocellulose composites. Alternatively, the immobilization of algae or cyanobacteria in nanopaper coatings or a porous nanocellulose matrix allows to design photosynthetic cell factories and advanced artificial leaves. The remaining challenges in upscaling and improving photosynthesis efficiency are finally addressed in order to establish a breakthrough in utilization of nanocellulose for artificial photosynthesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Allahverdiev, S. „Horizons of artificial photosynthesis“. Энергетическая политика, Nr. 9 (2022): 56–77. http://dx.doi.org/10.46920/2409-5516_2022_9175_56.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Karlsson, Joshua. „Artificial Photosynthesis: Faraday Discussion“. Johnson Matthey Technology Review 61, Nr. 4 (01.10.2017): 293–96. http://dx.doi.org/10.1595/205651317x696234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Wigginton, Nicholas S. „Artificial photosynthesis steps up“. Science 352, Nr. 6290 (02.06.2016): 1185.6–1186. http://dx.doi.org/10.1126/science.352.6290.1185-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ueno, Kosei, Tomoya Oshikiri, Xu Shi, Yuqing Zhong und Hiroaki Misawa. „Plasmon-induced artificial photosynthesis“. Interface Focus 5, Nr. 3 (06.06.2015): 20140082. http://dx.doi.org/10.1098/rsfs.2014.0082.

Der volle Inhalt der Quelle
Annotation:
We have successfully developed a plasmon-induced artificial photosynthesis system that uses a gold nanoparticle-loaded oxide semiconductor electrode to produce useful chemical energy as hydrogen and ammonia. The most important feature of this system is that both sides of a strontium titanate single-crystal substrate are used without an electrochemical apparatus. Plasmon-induced water splitting occurred even with a minimum chemical bias of 0.23 V owing to the plasmonic effects based on the efficient oxidation of water and the use of platinum as a co-catalyst for reduction. Photocurrent measurements were performed to determine the electron transfer between the gold nanoparticles and the oxide semiconductor. The efficiency of water oxidation was determined through spectroelectrochemical experiments aimed at elucidating the electron density in the gold nanoparticles. A set-up similar to the water-splitting system was used to synthesize ammonia via nitrogen fixation using ruthenium instead of platinum as a co-catalyst.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Bozal-Ginesta, C., und J. R. Durrant. „Artificial photosynthesis – concluding remarks“. Faraday Discussions 215 (2019): 439–51. http://dx.doi.org/10.1039/c9fd00076c.

Der volle Inhalt der Quelle
Annotation:
This paper follows on from the Concluding Remarks presentation of the 3rd Faraday Discussion Meeting on Artificial Photosynthesis, Cambridge, UK, 25–27th March 2019. It aims to discuss the context for the research discussed at this meeting with an overview of the motivation for research on artificial photosynthesis and an analysis of the composition and trends in the field of artificial photosynthesis, primarily using the results of searches of publication databases.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Fukuzumi, Shunichi, Yong-Min Lee und Wonwoo Nam. „Bioinspired artificial photosynthesis systems“. Tetrahedron 76, Nr. 14 (April 2020): 131024. http://dx.doi.org/10.1016/j.tet.2020.131024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

BORMAN, STU. „Artificial membrane mimics photosynthesis“. Chemical & Engineering News 76, Nr. 14 (06.04.1998): 14. http://dx.doi.org/10.1021/cen-v076n014.p014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Chabi, Sakineh, Kimberly M. Papadantonakis, Nathan S. Lewis und Michael S. Freund. „Membranes for artificial photosynthesis“. Energy & Environmental Science 10, Nr. 6 (2017): 1320–38. http://dx.doi.org/10.1039/c7ee00294g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Hammarström, Leif. „Artificial photosynthesis: closing remarks“. Faraday Discussions 198 (2017): 549–60. http://dx.doi.org/10.1039/c7fd00133a.

Der volle Inhalt der Quelle
Annotation:
This paper derives from my closing remarks lecture at the 198th Faraday Discussion meeting on Artificial Photosynthesis, Kyoto, Japan, February 28–March 2. The meeting had sessions on biological approaches and fundamental processes, molecular catalysts, inorganic assembly catalysts, and integration of systems for demonstrating realistic devices. The field has had much progress since the previous Faraday Discussion on Artificial Photosynthesis in Edinburgh, UK, in 2011. This paper is a personal account of recent discussions and developments in the field, as reflected in and discussed during the meeting. First it discusses the general directions of artificial photosynthesis and some considerations for a future solar fuels technology. Then it comments on some scientific directions in the area of the meeting.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Nazimek, D., und B. Czech. „Artificial photosynthesis - CO2towards methanol“. IOP Conference Series: Materials Science and Engineering 19 (01.03.2011): 012010. http://dx.doi.org/10.1088/1757-899x/19/1/012010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Gunawan, Rahmat, Ulinnuha Hammamiyah, Fahmi Fadillah, Chairul Saleh und Saibun Sitorus. „Investigations on The Mechanism of Artificial Photosynthesis of Ca-Pc-PDI and Dendrimer Molecule by DFT Calculations“. Jurnal ILMU DASAR 19, Nr. 2 (31.07.2018): 143. http://dx.doi.org/10.19184/jid.v19i2.7142.

Der volle Inhalt der Quelle
Annotation:
Artificial photosynthesis modelling of Ca-Pc-PDI complex Ca Phthalocyanine Perylenediimide), and dendrimer molecule using Density of Functional Theory (DFT) Method has been studied to showed the energy efficiency of these compounds in terms of electron transfer in photosynthesis. The Analysis of Ca-Pc-PDI and dendrimer compound and also chlorophyl has been done in all computations using the GAMESS-US software. The computations result in this research showed that the large wavelength complex compounds of Ca-Pc-PDI obtained was 138.3299 nm and energy efficiency obtained was 0.89 eV. The data analysis states that the absorption of harvest light energy of complex compounds Ca-Pc-PDI lies in the far UV spectrum. The other side, the polyphenylene dendrimer structure molecular orbital analyses it was found that the dendrimer was capable of electron transfers as indicated by the existence of HOMO and LUMO and result comparisons with chlorophyll. UV wavelengths of the polyethylene dendrimer and chlorophyll, respectively, suggesting that the polyphenylene dendrimer is capable of substituting chlorophyll in artificial photosyntheses. We can states from the result that these compound ability to be applied in the modeling of artificial photosynthesis as a material of energy absorption that mimics the workings of chlorophyll in terms of electron transfer in natural photosynthesis process. Keywords: Artificial photosynthesis modelling, Ca-Phthalocyanine-Perylenediimide complex, and dendrimer molecule
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Yang, Chonghui. „Recent trends in artificial photosynthetic system“. BIO Web of Conferences 61 (2023): 01012. http://dx.doi.org/10.1051/bioconf/20236101012.

Der volle Inhalt der Quelle
Annotation:
Solar energy is the most abundant and clean energy on the earth, and developing equipment or devices with high-efficiency solar energy conversion is an effective way to alleviate the energy crisis. The majority of redox enzymes require a coenzyme to provide the hydrogen source needed for the reaction process, and the most commonly used coenzyme is nicotinamide adenine dinucleotide (NADH). However, NADH is expensive and easily decomposed, which greatly limits its application of artificial photosynthetic systems. We review recent progress in the construction of artificial photosynthetic systems that mimic natural photosynthesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Singh, Meenesh R., und Alexis T. Bell. „Design of an artificial photosynthetic system for production of alcohols in high concentration from CO2“. Energy Environ. Sci. 9, Nr. 1 (2016): 193–99. http://dx.doi.org/10.1039/c5ee02783g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Hann, Elizabeth C., Sean Overa, Marcus Harland-Dunaway, Andrés F. Narvaez, Dang N. Le, Martha L. Orozco-Cárdenas, Feng Jiao und Robert E. Jinkerson. „A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production“. Nature Food 3, Nr. 6 (Juni 2022): 461–71. http://dx.doi.org/10.1038/s43016-022-00530-x.

Der volle Inhalt der Quelle
Annotation:
AbstractArtificial photosynthesis systems are proposed as an efficient alternative route to capture CO2 to produce additional food for growing global demand. Here a two-step CO2 electrolyser system was developed to produce a highly concentrated acetate stream with a 57% carbon selectivity (CO2 to acetate), allowing its direct use for the heterotrophic cultivation of yeast, mushroom-producing fungus and a photosynthetic green alga, in the dark without inputs from biological photosynthesis. An evaluation of nine crop plants found that carbon from exogenously supplied acetate incorporates into biomass through major metabolic pathways. Coupling this approach to existing photovoltaic systems could increase solar-to-food energy conversion efficiency by about fourfold over biological photosynthesis, reducing the solar footprint required. This technology allows for a reimagination of how food can be produced in controlled environments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Cardona, Tanai, Shengxi Shao und Peter J. Nixon. „Enhancing photosynthesis in plants: the light reactions“. Essays in Biochemistry 62, Nr. 1 (21.03.2018): 85–94. http://dx.doi.org/10.1042/ebc20170015.

Der volle Inhalt der Quelle
Annotation:
In this review, we highlight recent research and current ideas on how to improve the efficiency of the light reactions of photosynthesis in crops. We note that the efficiency of photosynthesis is a balance between how much energy is used for growth and the energy wasted or spent protecting the photosynthetic machinery from photodamage. There are reasons to be optimistic about enhancing photosynthetic efficiency, but many appealing ideas are still on the drawing board. It is envisioned that the crops of the future will be extensively genetically modified to tailor them to specific natural or artificial environmental conditions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Symes, Mark D., Richard J. Cogdell und Leroy Cronin. „Designing artificial photosynthetic devices using hybrid organic–inorganic modules based on polyoxometalates“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, Nr. 1996 (13.08.2013): 20110411. http://dx.doi.org/10.1098/rsta.2011.0411.

Der volle Inhalt der Quelle
Annotation:
Artificial photosynthesis aims at capturing solar energy and using it to produce storable fuels. However, while there is reason to be optimistic that such approaches can deliver higher energy conversion efficiencies than natural photosynthetic systems, many serious challenges remain to be addressed. Perhaps chief among these is the issue of device stability. Almost all approaches to artificial photosynthesis employ easily oxidized organic molecules as light harvesters or in catalytic centres, frequently in solution with highly oxidizing species. The ‘elephant in the room’ in this regard is that oxidation of these organic moieties is likely to occur at least as rapidly as oxidation of water, meaning that current device performance is severely curtailed. Herein, we discuss one possible solution to this problem: using self-assembling organic–polyoxometalate hybrid structures to produce compartments inside which the individual component reactions of photosynthesis can occur without such a high incidence of deleterious side reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhou, Xin, Yue Zeng, Yongyan Tang, Yiming Huang, Fengting Lv, Libing Liu und Shu Wang. „Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials“. Science Advances 6, Nr. 35 (August 2020): eabc5237. http://dx.doi.org/10.1126/sciadv.abc5237.

Der volle Inhalt der Quelle
Annotation:
Artificial regulation of state transition between photosystem I (PSI) and PSII will be a smart and promising way to improve efficiency of natural photosynthesis. In this work, we found that a synthetic light-harvesting polymer [poly(boron-dipyrromethene-co-fluorene) (PBF)] with green light absorption and far-red emission could improve PSI activity of algae Chlorella pyrenoidosa, followed by further upgrading PSII activity to augment natural photosynthesis. For light-dependent reactions, PBF accelerated photosynthetic electron transfer, and the productions of oxygen, ATP and NADPH were increased by 120, 97, and 76%, respectively. For light-independent reactions, the RuBisCO activity was enhanced by 1.5-fold, while the expression levels of rbcL encoding RuBisCO and prk encoding phosphoribulokinase were up-regulated by 2.6 and 1.5-fold, respectively. Furthermore, PBF could be absorbed by the Arabidopsis thaliana to speed up cell mitosis and enhance photosynthesis. By improving the efficiency of natural photosynthesis, synthetic light-harvesting polymer materials show promising potential applications for biofuel production.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Johnson-Groh, Mara. „Improvements to artificial photosynthesis devices“. Scilight 2022, Nr. 34 (19.08.2022): 341102. http://dx.doi.org/10.1063/10.0013774.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

W. Tausch, Michael, Richard Kremer und Claudia Bohrmann-Linde. „Artificial Photosynthesis in Chemical Edication“. Educación Química 32, Nr. 3 (28.07.2021): 144. http://dx.doi.org/10.22201/fq.18708404e.2021.3.78053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Schaming, Delphine, Imren Hatay, Fernando Cortez, Astrid Olaya, Manuel A. Méndez, Pei Yu Ge, Haiqiang Deng, Patrick Voyame, Zahra Nazemi und Hubert Girault. „Artificial Photosynthesis at Soft Interfaces“. CHIMIA International Journal for Chemistry 65, Nr. 5 (26.05.2011): 356–59. http://dx.doi.org/10.2533/chimia.2011.356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Messinger, Johannes, Wolfgang Lubitz und Jian-Ren Shen. „Photosynthesis: from natural to artificial“. Physical Chemistry Chemical Physics 16, Nr. 24 (2014): 11810. http://dx.doi.org/10.1039/c4cp90053g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Barber, James, und Phong D. Tran. „From natural to artificial photosynthesis“. Journal of The Royal Society Interface 10, Nr. 81 (06.04.2013): 20120984. http://dx.doi.org/10.1098/rsif.2012.0984.

Der volle Inhalt der Quelle
Annotation:
Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO 2 ) emissions demands that stabilizing the atmospheric CO 2 levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an ‘artificial leaf’ able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chow, W. S. „Photosynthesis: From Natural Towards Artificial“. Journal of Biological Physics 29, Nr. 4 (2003): 447–59. http://dx.doi.org/10.1023/a:1027371022781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

YURTSEVER, Hüsnü Arda, und Muhsin ÇİFTÇİOĞLU. „Artificial Photosynthesis with Titania Photocatalysts“. Natural and Applied Sciences Journal 2, Nr. 2 (31.12.2019): 1–15. http://dx.doi.org/10.38061/idunas.658011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kuang, Tingyun. „A breakthrough of artificial photosynthesis“. National Science Review 3, Nr. 1 (01.03.2016): 2–3. http://dx.doi.org/10.1093/nsr/nwv071.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Concepcion, J. J., R. L. House, J. M. Papanikolas und T. J. Meyer. „Chemical approaches to artificial photosynthesis“. Proceedings of the National Academy of Sciences 109, Nr. 39 (24.09.2012): 15560–64. http://dx.doi.org/10.1073/pnas.1212254109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Abe, Ryu, Mark Bajada, Matthias Beller, Andrew B. Bocarsly, Julea N. Butt, Flavia Cassiola, Wolfgang Domcke et al. „Beyond artificial photosynthesis: general discussion“. Faraday Discussions 215 (2019): 422–38. http://dx.doi.org/10.1039/c9fd90022e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Sealy, Cordelia. „Nanoparticle catalysts promise artificial photosynthesis“. Materials Today 35 (Mai 2020): 7. http://dx.doi.org/10.1016/j.mattod.2020.03.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie