Zeitschriftenartikel zum Thema „Atmospheric Chemistry|Environmental Sciences“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Atmospheric Chemistry|Environmental Sciences.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Atmospheric Chemistry|Environmental Sciences" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Gordov, E. P., V. N. Lykosov und A. Z. Fazliev. „Web portal on environmental sciences "ATMOS''“. Advances in Geosciences 8 (06.06.2006): 33–38. http://dx.doi.org/10.5194/adgeo-8-33-2006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru) makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative) sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.
2

Yu, Reviewed by Jian Zhen. „The Atmospheric Chemist’s Companion: Numerical Data for Use in the Atmospheric Sciences“. Environmental Chemistry 10, Nr. 5 (2013): 437. http://dx.doi.org/10.1071/env10n5_br.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jia, Hepeng. „Using science to conquer haze: an interview with Tong Zhu“. National Science Review 4, Nr. 6 (01.11.2017): 867–69. http://dx.doi.org/10.1093/nsr/nwx144.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract With a doctorate degree from the University of Wuppertal in Germany (1991), Tong Zhu is a Cheung Kong Chair Professor of Environmental Sciences at Peking University (PKU). He is a leading scientist in atmospheric pollution study and has been advising the Chinese government on controlling air pollution in the event of major international activities in China, including the 2008 Beijing Olympics. He served as a co-chair of the scientific steering committee of International Global Atmospheric Chemistry (IGAC) and now is the chair of the Expert Panel of the National Natural Science Foundation of China's Major Research Program, ‘Fundamental researches on the formation and response mechanism of air pollution complex in China’. His research is focused on air pollution related chemical reactions, health effects of environmental pollution, megacity and regional air pollution control, and the air surface exchange and global biogeochemistry. To better understand the current status of the atmospheric pollution research in China and its contribution to air pollution control, the National Science Review made an exclusive interview with Prof. Zhu.
4

Derwent, R. G. „Introductory chemistry for the environmental sciences. By Roy Harrison and Stephen De Mora. Cambridge Environmental Chemistry Series 7. Cambridge University Press. Xvi + 373 Pp. Price £19.95 (Paperback). Isbn 0 521 48450 2“. Quarterly Journal of the Royal Meteorological Society 123, Nr. 538 (Januar 1997): 529. http://dx.doi.org/10.1002/qj.49712353815.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

TOHFUKU, Hidero, Kiyoshi TAKEDA, Kensuke CHIKAMORI, Katsuo MURATAR, Yasuhiro IMAKURA und Shinsuke YAMASHITA. „Special Articles: Environmental Sciences and Analytical Chemistry. Analysis of major ions in coastal atmospheric deposits collected by a simplified method.“ Bunseki kagaku 43, Nr. 11 (1994): 885–90. http://dx.doi.org/10.2116/bunsekikagaku.43.885.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dovhyi, S. O., K. V. Terletskа und S. M. Babiіchuk. „Climate education in Junior academy of sciences of Ukraine“. Scientific Notes of Junior Academy of Sciences of Ukraine, Nr. 2(18) (2020): 3–13. http://dx.doi.org/10.51707/2618-0529-2020-18-01.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Global climate change is one of the central issue of human progress. In the long run, climate change is likely cause a significant slowdown in economic growth. Education is one of the important decision-making tools to adress further climate change. Climate education requires a multidisciplinary approach that includes as the natural sciences (physics, chemistry, geography, biology, geophysics, etc.) and the social sciences (economics, law, etc.). Climate education in the Junior academy sciences of Ukraine (as a UNESCO center of science education) includes techniques within the framework of science education, that based on projects and active teaching, discussing problems in class, questioning: inquiry-based approaches to learning, research to investigate the hypotheses, which may be carried out through experiments, investigations, observations or documentary studies that will lead to solutions with the climate change. The goal of this educational activity is to develop environmental awareness, understanding of the physical aspects of the formation of natural phenomena such as the greenhouse effect, ocean currents and atmospheric circulation, other scientific knowledge and life skills. They are necessary for young people to understand the causes, consequences and mechanisms of climate change. The possibilities of integrating elements of science education on climate issues in the extracurricular education program are described in present paper. In the paper we describe as some examples and corresponding demonstrations of physical experiments as the possibilities of remote sensing to monitor climate change and factors affecting to them.
7

Ondov, John V., Cliff M. Davidson und Paul A. Solomon. „Special Issue ofAerosol Science and Technologyfor Particulate Matter: Atmospheric Sciences, Exposure, and the Fourth Colloquium on PM and Human Health“. Aerosol Science and Technology 38, sup2 (Januar 2004): 1–2. http://dx.doi.org/10.1080/02786820490519234.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Law, Cliff S., Emilie Brévière, Gerrit de Leeuw, Véronique Garçon, Cécile Guieu, David J. Kieber, Stefan Kontradowitz et al. „Evolving research directions in Surface Ocean - Lower Atmosphere (SOLAS) science“. Environmental Chemistry 10, Nr. 1 (2013): 1. http://dx.doi.org/10.1071/en12159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Environmental context Understanding the exchange of energy, gases and particles at the ocean–atmosphere interface is critical for the development of robust predictions of, and response to, future climate change. The international Surface Ocean–Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean–atmosphere research projects that quantify and characterise this exchange. This article details five new SOLAS research strategies – upwellings and associated oxygen minimum zones, sea ice, marine aerosols, atmospheric nutrient supply and ship emissions – that aim to improve knowledge in these critical areas. Abstract This review focuses on critical issues in ocean–atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean–Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission to the atmosphere, and the proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the climate system. The second regional research focus will examine the role of sea-ice biogeochemistry and its interaction with atmospheric chemistry. Marine aerosols are the focus of a research theme directed at understanding the processes that determine their abundance, chemistry and radiative properties. A further area of aerosol-related research examines atmospheric nutrient deposition in the surface ocean, and how differences in origin, atmospheric processing and composition influence surface ocean biogeochemistry. Ship emissions are an increasing source of aerosols, nutrients and toxins to the atmosphere and ocean surface, and an emerging area of research will examine their effect on ocean biogeochemistry and atmospheric chemistry. The primary role of SOLAS is to coordinate coupled multi-disciplinary research within research strategies that address these issues, to achieve robust representation of critical ocean–atmosphere exchange processes in Earth System models.
9

DERWENT, R. G. „Book review: Introductory chemistry for the environmental sciences. Roy Harrison and Stephen de Mora. Cambridge Environmental Chemistry Series 7. Cambridge University Press (Cambridge). 1996 No. of pages: xvi+373. Price: £19.95, US$29.95. ISBN 0-521-48450-2 (paperback), £55.00, US$80.00 ISBN 0-521-48172-4 (hardback)“. International Journal of Climatology 17, Nr. 8 (30.06.1997): 903–4. http://dx.doi.org/10.1002/(sici)1097-0088(19970630)17:8<903::aid-joc176>3.0.co;2-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Rennie, Susannah, Chris Andrews, Sarah Atkinson, Deborah Beaumont, Sue Benham, Vic Bowmaker, Jan Dick et al. „The UK Environmental Change Network datasets – integrated and co-located data for long-term environmental research (1993–2015)“. Earth System Science Data 12, Nr. 1 (14.01.2020): 87–107. http://dx.doi.org/10.5194/essd-12-87-2020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. Long-term datasets of integrated environmental variables, co-located together, are relatively rare. The UK Environmental Change Network (ECN) was launched in 1992 and provides the UK with its only long-term integrated environmental monitoring and research network for the assessment of the causes and consequences of environmental change. Measurements, covering a wide range of physical, chemical, and biological “driver” and “response” variables are made in close proximity at ECN terrestrial sites using protocols incorporating standard quality control procedures. This paper describes the datasets (there are 19 published ECN datasets) for these co-located measurements, containing over 20 years of data (1993–2015). The data and supporting documentation are freely available from the NERC Environmental Information Data Centre under the terms of the Open Government Licence using the following DOIs. Meteorology Meteorology: https://doi.org/10.5285/fc9bcd1c-e3fc-4c5a-b569-2fe62d40f2f5 (Rennie et al., 2017a) Biogeochemistry Atmospheric nitrogen chemistry: https://doi.org/10.5285/baf51776-c2d0-4e57-9cd3-30cd6336d9cf (Rennie et al., 2017b) Precipitation chemistry: https://doi.org/10.5285/18b7c387-037d-4949-98bc-e8db5ef4264c (Rennie et al., 2017c) Soil solution chemistry: https://doi.org/10.5285/b330d395-68f2-47f1-8d59-3291dc02923b (Rennie et al., 2017d) Stream water chemistry: https://doi.org/10.5285/fd7ca5ef-460a-463c-ad2b-5ad48bb4e22e (Rennie et al., 2017e) Stream water discharge: https://doi.org/10.5285/8b58c86b-0c2a-4d48-b25a-7a0141859004 (Rennie et al., 2017f) Invertebrates Moths: https://doi.org/10.5285/a2a49f47-49b3-46da-a434-bb22e524c5d2 (Rennie et al., 2017g) Butterflies: https://doi.org/10.5285/5aeda581-b4f2-4e51-b1a6-890b6b3403a3 (Rennie et al., 2017h) Carabid beetle: https://doi.org/10.5285/8385f864-dd41-410f-b248-028f923cb281 (Rennie et al., 2017i) Spittle bugs: https://doi.org/10.5285/aff433be-0869-4393-b765-9e6faad2a12b (Rennie et al., 2018) Vegetation Baseline: https://doi.org/10.5285/a7b49ac1-24f5-406e-ac8f-3d05fb583e3b (Rennie et al., 2016a) Coarse grain: https://doi.org/10.5285/d349babc-329a-4d6e-9eca-92e630e1be3f (Rennie et al., 2016b) Woodland: https://doi.org/10.5285/94aef007-634e-42db-bc52-9aae86adbd33 (Rennie et al., 2017j) Fine grain: https://doi.org/10.5285/b98efec8-6de0-4e0c-85dc-fe4cdf01f086 (Rennie et al., 2017k) Vertebrates Frogs: https://doi.org/10.5285/4d8c7dd9-8248-46ca-b988-c1fc38e51581 (Rennie et al., 2017l) Birds (Breeding bird survey): https://doi.org/10.5285/5886c3ba-1fa5-49c0-8da8-40e69a10d2b5 (Rennie et al., 2017m) Birds (Common bird census): https://doi.org/10.5285/8582a02c-b28c-45d2-afa1-c1e85fba023d (Rennie et al., 2017n) Bats: https://doi.org/10.5285/2588ee91-6cbd-4888-86fc-81858d1bf085 (Rennie et al., 2017o) Rabbits and deer: https://doi.org/10.5285/0be0aed3-f205-4f1f-a65d-84f8cfd8d50f (Rennie et al., 2017p)
11

Quinn, Patricia K., Elizabeth J. Thompson, Derek J. Coffman, Sunil Baidar, Ludovic Bariteau, Timothy S. Bates, Sebastien Bigorre et al. „Measurements from the RV <i>Ronald H. Brown</i> and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)“. Earth System Science Data 13, Nr. 4 (29.04.2021): 1759–90. http://dx.doi.org/10.5194/essd-13-1759-2021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51∘ W, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanic–atmospheric coupling and aerosol–cloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein.
12

Wu, D., J. Du, H. Deng, W. Wang, H. Xiao und P. Li. „Estimation of atmospheric iodine emission from coal combustion“. International Journal of Environmental Science and Technology 11, Nr. 2 (19.02.2013): 357–66. http://dx.doi.org/10.1007/s13762-013-0193-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Cheng, K., H. Z. Tian, D. Zhao, L. Lu, Y. Wang, J. Chen, X. G. Liu, W. X. Jia und Z. Huang. „Atmospheric emission inventory of cadmium from anthropogenic sources“. International Journal of Environmental Science and Technology 11, Nr. 3 (02.03.2013): 605–16. http://dx.doi.org/10.1007/s13762-013-0206-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Vahidi Ghazvini, M., K. Ashrafi, M. Shafiepour Motlagh und A. Pardakhti. „Estimation of atmospheric mercury emission inventory in Tehran Province“. International Journal of Environmental Science and Technology 17, Nr. 11 (16.04.2020): 4495–504. http://dx.doi.org/10.1007/s13762-020-02739-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Bauch, Dorothea, Matthias Gröger, Igor Dmitrenko, Jens Hölemann, Sergey Kirillov, Andreas Mackensen, Ekatarina Taldenkova und Nils Andersen. „Atmospheric controlled freshwater release at the Laptev Sea continental margin“. Polar Research 30, Nr. 1 (31.12.2010): 5858. http://dx.doi.org/10.3402/polar.v30i0.5858.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Srimurali, S., S. Govindaraj, S. Krishna Kumar und R. Babu Rajendran. „Distribution of organochlorine pesticides in atmospheric air of Tamilnadu, southern India“. International Journal of Environmental Science and Technology 12, Nr. 6 (03.05.2014): 1957–64. http://dx.doi.org/10.1007/s13762-014-0558-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Hidy, G. M. „Atmospheric Chemistry in a Box or a Bag“. Atmosphere 10, Nr. 7 (16.07.2019): 401. http://dx.doi.org/10.3390/atmos10070401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Environmental chambers have proven to be essential for atmospheric photochemistry research. This historical perspective summarizes chamber research characterizing smog. Experiments with volatile organic compounds (VOCs)-nitrogen oxides (NOx) have characterized O3 and aerosol chemistry. These led to the creation and evaluation of complex reaction mechanisms adopted for various applications. Gas-phase photochemistry was initiated and developed using chamber studies. Post-1950s study of photochemical aerosols began using smog chambers. Much of the knowledge about the chemistry of secondary organic aerosols (SOA) derives from chamber studies complemented with specially designed atmospheric studies. Two major findings emerge from post-1990s SOA experiments: (1) photochemical SOAs hypothetically involve hydrocarbons and oxygenates with carbon numbers of 2, and (2) SOA evolves via more than one generation of reactions as condensed material exchanges with the vapor phase during “aging”. These elements combine with multiphase chemistry to yield mechanisms for aerosols. Smog chambers, like all simulators, are limited representations of the atmosphere. Translation to the atmosphere is complicated by constraints in reaction times, container interactions, influence of precursor injections, and background species. Interpretation of kinetics requires integration into atmospheric models addressing the combined effects of precursor emissions, surface exchange, hydrometeor interactions, air motion and sunlight.
18

Frischknecht, P. M. „Environmental science education at the Swiss Federal Institute of Technology (ETH)“. Water Science and Technology 41, Nr. 2 (01.01.2000): 31–36. http://dx.doi.org/10.2166/wst.2000.0040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In 1987 ETHZ, the Swiss Federal Institute of Technology, first offered a degree course in environmental sciences. The curriculum is based upon a comprehensive view of the environment and its systems. The first two years of the programme cover a multidisciplinary basic education in mathematics, natural and social sciences. For their advanced education in the fifth to nineth semesters the students select one of four science disciplines (Chemistry/Microbiology, Physics, Biology or Environmental Hygiene) and one of four environmental systems (Aquatic Systems, Atmosphere, Terrestrial Systems or Anthroposphere). The education in natural sciences is accompanied by a compulsory case study, which is implemented as a didactic tool to teach ecological problem-solving, and courses in environmental social sciences and environmental technology. During the professional practical training of about four months, students gain insight into the constraints of a professional environment. In the tenth semester a diploma project - equivalent to a master's thesis - is carried out.
19

Holmes, Christopher D. „Methane Feedback on Atmospheric Chemistry: Methods, Models, and Mechanisms“. Journal of Advances in Modeling Earth Systems 10, Nr. 4 (April 2018): 1087–99. http://dx.doi.org/10.1002/2017ms001196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Asilevi, P. J., C. W. Yi, J. Li, M. I. Nawaz, H. J. Wang, L. Yin und Z. Junli. „Decomposition of formaldehyde in strong ionization non-thermal plasma at atmospheric pressure“. International Journal of Environmental Science and Technology 17, Nr. 2 (16.07.2019): 765–76. http://dx.doi.org/10.1007/s13762-019-02476-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kar, S., A. C. Samal, J. P. Maity und S. C. Santra. „Diversity of epiphytic lichens and their role in sequestration of atmospheric metals“. International Journal of Environmental Science and Technology 11, Nr. 4 (17.04.2013): 899–908. http://dx.doi.org/10.1007/s13762-013-0270-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Emmerson, K. M., A. R. MacKenzie, S. M. Owen, M. J. Evans und D. E. Shallcross. „A Lagrangian model with simple primary and secondary aerosol scheme 1: comparison with UK PM<sub>10</sub> data“. Atmospheric Chemistry and Physics 4, Nr. 8 (09.11.2004): 2161–70. http://dx.doi.org/10.5194/acp-4-2161-2004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. A Lagrangian trajectory model used to simulate photochemistry has been extended to include a simple parameterisation of primary and secondary aerosol particles. The model uses emission inventories of primary particles for the UK from the NAEI (National Atmospheric Emissions Inventory for the UK), and for Europe from the TNO (Institute of Environmental Sciences, Energy Research and Process Innovation, the Netherlands) respectively, to transport tracers representing PM10. One biogenic and two anthropogenic organic compounds were chosen as surrogates to model the formation of condensable material suitable for the production of secondary organic aerosol (SOA). The SOA is added to the primary PM10 and compared to measured PM10 at one urban and two rural UK receptor sites. The results show an average under-prediction by factors of 4.5 and 8.9 in the urban and rural cases respectively. The model is also used to simulate production of two secondary inorganic species, H2SO4 and HNO3, which are assumed, as a limiting case, to be present in the particle phase. The relationships between modelled and measured total PM10 improved with the addition of secondary inorganic compounds, and the overall model under-prediction factors are reduced to 3.5 and 3.9 in the urban and rural cases respectively. Nevertheless, our conclusion is that current emissions and chemistry do not appear to provide sufficient information to model PM10 well (i.e. to within a factor of two). There is a need for further process studies to inform global climate modelling that includes climate forcing by aerosol.
23

Henehan, Michael J., Pincelli M. Hull, Donald E. Penman, James W. B. Rae und Daniela N. Schmidt. „Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study“. Philosophical Transactions of the Royal Society B: Biological Sciences 371, Nr. 1694 (19.05.2016): 20150510. http://dx.doi.org/10.1098/rstb.2015.0510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO 2 concentrations ( p CO 2 ). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric p CO 2 . To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous–Palaeogene (K–Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K–Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry.
24

Tsuji, M., M. Miyano, N. Kamo, T. Kawahara, K. Uto, J. Hayashi und T. Tsuji. „Photochemical degradation of acrolein using VUV excimer lamp in air at atmospheric pressure“. International Journal of Environmental Science and Technology 16, Nr. 11 (20.05.2019): 7229–40. http://dx.doi.org/10.1007/s13762-019-02404-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sun, Jian, Joshua S. Fu, John B. Drake, Qingzhao Zhu, Azzam Haidar, Mark Gates, Stanimire Tomov und Jack Dongarra. „Computational Benefit of GPU Optimization for the Atmospheric Chemistry Modeling“. Journal of Advances in Modeling Earth Systems 10, Nr. 8 (August 2018): 1952–69. http://dx.doi.org/10.1029/2018ms001276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Song, I. ‐S, H. ‐Y Chun, G. Jee, S. ‐Y Kim, J. Kim, Y. ‐H Kim und M. A. Taylor. „Dynamic Initialization for Whole Atmospheric Global Modeling“. Journal of Advances in Modeling Earth Systems 10, Nr. 9 (September 2018): 2096–120. http://dx.doi.org/10.1029/2017ms001213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ha, Kyung-Ja, SungHyun Nam, Jin-Yong Jeong, Il-Ju Moon, Meehye Lee, Junghee Yun, Chan Joo Jang et al. „Observations Utilizing Korea Ocean Research Stations and their Applications for Process Studies“. Bulletin of the American Meteorological Society 100, Nr. 10 (Oktober 2019): 2061–75. http://dx.doi.org/10.1175/bams-d-18-0305.1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractThe main purposes for establishing the Korea ocean research stations (KORS) are for advancing an overall understanding of atmospheric and oceanic phenomena in the Yellow and East China Seas; for providing core scientific data for the studies on global environmental change, typhoon dynamics, biogeochemical cycles, marine ecosystems and fisheries, atmospheric chemistry involving Asian dust and aerosols, air–sea interaction processes including sea fog, and regional oceanographic process studies; and for functioning as ground stations of ocean remote sensing. Here, ocean–atmosphere time series observations with data service and case studies of KORS applications that will facilitate collaboration among researchers in the international atmospheric and oceanographic communities are presented.
28

Liston, Glen E., Oddbjørn Bruland, Jan-Gunnar Winther, Hallgeir Elvehøy und Knut Sand. „Meltwater production in Antarctic blue-ice areas: sensitivity to changes in atmospheric forcing“. Polar Research 18, Nr. 2 (Dezember 1999): 283–90. http://dx.doi.org/10.1111/j.1751-8369.1999.tb00305.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Hansen, Georg, Katrine Aspmo, Torunn Berg, Kåre Edvardsen, Mmarkus Fiebig, Roland Kallenborn, Terje Krognes et al. „Atmospheric monitoring at the Norwegian Antarctic station Troll: measurement programme and first results“. Polar Research 28, Nr. 3 (Januar 2009): 353–63. http://dx.doi.org/10.1111/j.1751-8369.2009.00134.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Peng, Zhe, Julia Lee-Taylor, John J. Orlando, Geoffrey S. Tyndall und Jose L. Jimenez. „Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance“. Atmospheric Chemistry and Physics 19, Nr. 2 (22.01.2019): 813–34. http://dx.doi.org/10.5194/acp-19-813-2019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. Oxidation flow reactors (OFRs) are a promising complement to environmental chambers for investigating atmospheric oxidation processes and secondary aerosol formation. However, questions have been raised about how representative the chemistry within OFRs is of that in the troposphere. We investigate the fates of organic peroxy radicals (RO2), which play a central role in atmospheric organic chemistry, in OFRs and environmental chambers by chemical kinetic modeling and compare to a variety of ambient conditions to help define a range of atmospherically relevant OFR operating conditions. For most types of RO2, their bimolecular fates in OFRs are mainly RO2+HO2 and RO2+NO, similar to chambers and atmospheric studies. For substituted primary RO2 and acyl RO2, RO2+RO2 can make a significant contribution to the fate of RO2 in OFRs, chambers and the atmosphere, but RO2+RO2 in OFRs is in general somewhat less important than in the atmosphere. At high NO, RO2+NO dominates RO2 fate in OFRs, as in the atmosphere. At a high UV lamp setting in OFRs, RO2+OH can be a major RO2 fate and RO2 isomerization can be negligible for common multifunctional RO2, both of which deviate from common atmospheric conditions. In the OFR254 operation mode (for which OH is generated only from the photolysis of added O3), we cannot identify any conditions that can simultaneously avoid significant organic photolysis at 254 nm and lead to RO2 lifetimes long enough (∼ 10 s) to allow atmospherically relevant RO2 isomerization. In the OFR185 mode (for which OH is generated from reactions initiated by 185 nm photons), high relative humidity, low UV intensity and low precursor concentrations are recommended for the atmospherically relevant gas-phase chemistry of both stable species and RO2. These conditions ensure minor or negligible RO2+OH and a relative importance of RO2 isomerization in RO2 fate in OFRs within ∼×2 of that in the atmosphere. Under these conditions, the photochemical age within OFR185 systems can reach a few equivalent days at most, encompassing the typical ages for maximum secondary organic aerosol (SOA) production. A small increase in OFR temperature may allow the relative importance of RO2 isomerization to approach the ambient values. To study the heterogeneous oxidation of SOA formed under atmospherically relevant OFR conditions, a different UV source with higher intensity is needed after the SOA formation stage, which can be done with another reactor in series. Finally, we recommend evaluating the atmospheric relevance of RO2 chemistry by always reporting measured and/or estimated OH, HO2, NO, NO2 and OH reactivity (or at least precursor composition and concentration) in all chamber and flow reactor experiments. An easy-to-use RO2 fate estimator program is included with this paper to facilitate the investigation of this topic in future studies.
31

Issakhov, A. A., und A. R. Baitureyeva. „Modeling of a passive scalar transport from thermal power plants to atmospheric boundary layer“. International Journal of Environmental Science and Technology 16, Nr. 8 (21.02.2019): 4375–92. http://dx.doi.org/10.1007/s13762-019-02273-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Giri, D., K. V. Murthy, P. R. Adhikary und S. N. Khanal. „Ambient air quality of Kathmandu valley as reflected by atmospheric particulate matter concentrations (PM10)“. International Journal of Environmental Science & Technology 3, Nr. 4 (September 2006): 403–10. http://dx.doi.org/10.1007/bf03325949.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Holland, Rayne, M. Anwar H. Khan, Rabi Chhantyal-Pun, Andrew J. Orr-Ewing, Carl J. Percival, Craig A. Taatjes und Dudley E. Shallcross. „Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model“. Atmosphere 11, Nr. 4 (19.04.2020): 407. http://dx.doi.org/10.3390/atmos11040407.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Perfluorooctanoic acid, PFOA, is one of the many concerning pollutants in our atmosphere; it is highly resistant to environmental degradation processes, which enables it to accumulate biologically. With direct routes of this chemical to the environment decreasing, as a consequence of the industrial phase out of PFOA, it has become more important to accurately model the effects of indirect production routes, such as environmental degradation of precursors; e.g., fluorotelomer alcohols (FTOHs). The study reported here investigates the chemistry, physical loss and transport of PFOA and its precursors, FTOHs, throughout the troposphere using a 3D global chemical transport model, STOCHEM-CRI. Moreover, this investigation includes an important loss process of PFOA in the atmosphere via the addition of the stabilised Criegee intermediates, hereby referred to as the “Criegee Field.” Whilst reaction with Criegee intermediates is a significant atmospheric loss process of PFOA, it does not result in its permanent removal from the atmosphere. The atmospheric fate of the resultant hydroperoxide product from the reaction of PFOA and Criegee intermediates resulted in a ≈0.04 Gg year−1 increase in the production flux of PFOA. Furthermore, the physical loss of the hydroperoxide product from the atmosphere (i.e., deposition), whilst decreasing the atmospheric concentration, is also likely to result in the reformation of PFOA in environmental aqueous phases, such as clouds, precipitation, oceans and lakes. As such, removal facilitated by the “Criegee Field” is likely to simply result in the acceleration of PFOA transfer to the surface (with an expected decrease in PFOA atmospheric lifetime of ≈10 h, on average from ca. 80 h without Criegee loss to 70 h with Criegee loss).
34

Lahermo, P. W., T. Tarvainen und J. P. Tuovinen. „Atmospheric sulfur deposition and streamwater quality in Finland“. Environmental Geology 24, Nr. 2 (Oktober 1994): 90–98. http://dx.doi.org/10.1007/bf00767882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Jordán, M. M., C. Álvarez und T. Sanfeliu. „Spherical particles as tracers of atmospheric ceramic industry“. Environmental Geology 51, Nr. 3 (24.05.2006): 447–53. http://dx.doi.org/10.1007/s00254-006-0339-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

McTaggart‐Cowan, R., P. A. Vaillancourt, A. Zadra, S. Chamberland, M. Charron, S. Corvec, J. A. Milbrandt et al. „Modernization of Atmospheric Physics Parameterization in Canadian NWP“. Journal of Advances in Modeling Earth Systems 11, Nr. 11 (November 2019): 3593–635. http://dx.doi.org/10.1029/2019ms001781.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Wang, Dongyu S., und Lea Hildebrandt Ruiz. „Secondary organic aerosol from chlorine-initiated oxidation of isoprene“. Atmospheric Chemistry and Physics 17, Nr. 22 (14.11.2017): 13491–508. http://dx.doi.org/10.5194/acp-17-13491-2017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with hydroperoxy (HOx) radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOCs) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) formation from chlorine-initiated photooxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 7 to 36 %, decreasing with extended photooxidation and SOA aging. Formation of particulate organochloride was observed. A high-resolution time-of-flight chemical ionization mass spectrometer was used to determine the molecular composition of gas-phase species using iodide–water and hydronium–water cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX), and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading.
38

Leiva G., M. A., R. Toro, R. G. E. Morales, M. A. Ríos und M. R. González. „A study of water-soluble inorganic ions in size-segregated aerosols in atmospheric pollution episode“. International Journal of Environmental Science and Technology 11, Nr. 2 (20.03.2013): 437–48. http://dx.doi.org/10.1007/s13762-013-0221-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Salam, M. A., Y. Shirasuna, K. Hirano und S. Masunaga. „Particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of urban and suburban residential area“. International Journal of Environmental Science & Technology 8, Nr. 2 (März 2011): 255–66. http://dx.doi.org/10.1007/bf03326214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Monks, Paul S., A. R. Ravishankara, Erika von Schneidemesser und Roberto Sommariva. „Opinion: Papers that shaped tropospheric chemistry“. Atmospheric Chemistry and Physics 21, Nr. 17 (01.09.2021): 12909–48. http://dx.doi.org/10.5194/acp-21-12909-2021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract. Which published papers have transformed our understanding of the chemical processes in the troposphere and shaped the field of atmospheric chemistry? By way of expert solicitation and interactive peer review, this paper explores the influence of the ideas in peer-reviewed articles based on input from our community of atmospheric scientists. We explore how these papers have shaped the development of the field of atmospheric chemistry and identify the major landmarks in the field of atmospheric chemistry through the lens of those papers' impact on science, legislation and environmental events. We also explore the ways in which one can identify the papers that have most impacted the field and discuss the advantages and disadvantages of the various approaches. Our work highlights the difficulty of creating a simple list, and we explore the reasons for this difficulty. The paper also provides a history of the development of our understanding of tropospheric chemistry and points some ways for the future.
41

Zhan, Jianqiong, und Yuan Gao. „Impact of summertime anthropogenic emissions on atmospheric black carbon at Ny-Ålesund in the Arctic“. Polar Research 33, Nr. 1 (Januar 2014): 21821. http://dx.doi.org/10.3402/polar.v33.21821.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

GRODZIŃSKA., KRYSTYAN, BARBARA GODZIK und PIOTR BIEŃKOWSKI. „Cladina Stellaris (Opiz) Brodo as a bioindicator of atmospheric deposition on the Kola Peninsula, Russia“. Polar Research 18, Nr. 1 (Juni 1999): 105–10. http://dx.doi.org/10.1111/j.1751-8369.1999.tb00279.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ghermandi, G., S. Teggi, S. Fabbi, A. Bigi und M. M. Zaccanti. „Tri-generation power plant and conventional boilers: pollutant flow rate and atmospheric impact of stack emissions“. International Journal of Environmental Science and Technology 12, Nr. 2 (08.01.2014): 693–704. http://dx.doi.org/10.1007/s13762-013-0463-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Pincus, Robert, und Bjorn Stevens. „Paths to accuracy for radiation parameterizations in atmospheric models“. Journal of Advances in Modeling Earth Systems 5, Nr. 2 (06.05.2013): 225–33. http://dx.doi.org/10.1002/jame.20027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Bains, William, Janusz Jurand Petkowski und Sara Seager. „A Data Resource for Sulfuric Acid Reactivity of Organic Chemicals“. Data 6, Nr. 3 (25.02.2021): 24. http://dx.doi.org/10.3390/data6030024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
We describe a dataset of the quantitative reactivity of organic chemicals with concentrated sulfuric acid. As well as being a key industrial chemical, sulfuric acid is of environmental and planetary importance. In the absence of measured reaction kinetics, the reaction rate of a chemical with sulfuric acid can be estimated from the reaction rate of structurally related chemicals. To allow an approximate prediction, we have collected 589 sets of kinetic data on the reaction of organic chemicals with sulfuric acid from 262 literature sources and used a functional group-based approach to build a model of how the functional groups would react in any sulfuric acid concentration from 60–100%, and between −20 °C and 100 °C. The data set provides the original reference data and kinetic measurements, parameters, intermediate computation steps, and a set of first-order rate constants for the functional groups across the range of conditions −20 °C–100 °C and 60–100% sulfuric acid. The dataset will be useful for a range of studies in chemistry and atmospheric sciences where the reaction rate of a chemical with sulfuric acid is needed but has not been measured.
46

Elmes, M., I. Delbem, M. Gasparon und V. Ciminelli. „Single-particle analysis of atmospheric particulate matter using automated mineralogy: the potential for monitoring mine-derived emissions“. International Journal of Environmental Science and Technology 17, Nr. 5 (18.02.2020): 2743–54. http://dx.doi.org/10.1007/s13762-020-02660-w.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Balabanova, B., T. Stafilov, R. Šajn und K. Bačeva. „Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine“. International Journal of Environmental Science and Technology 11, Nr. 2 (17.04.2013): 517–28. http://dx.doi.org/10.1007/s13762-013-0262-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Amouei Torkmahalleh, M., Z. Assanova, M. Baimaganbetova und A. Zinetullina. „A study to reduce atmospheric emissions of an existing natural gas dehydration plant using multiple thermodynamic models“. International Journal of Environmental Science and Technology 16, Nr. 3 (22.05.2018): 1613–24. http://dx.doi.org/10.1007/s13762-018-1802-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wine, Paul H. „Atmospheric and Environmental Physical Chemistry: Pollutants without Borders“. Journal of Physical Chemistry Letters 1, Nr. 11 (03.06.2010): 1749–51. http://dx.doi.org/10.1021/jz1006252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Mahowald, Natalie M., Philip J. Rasch, Brian E. Eaton, Stewart Whittlestone und Ronald G. Prinn. „Transport of222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR“. Journal of Geophysical Research: Atmospheres 102, Nr. D23 (01.12.1997): 28139–51. http://dx.doi.org/10.1029/97jd02084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie