Auswahl der wissenschaftlichen Literatur zum Thema „AUTOMATIC BUG TRIAGING“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "AUTOMATIC BUG TRIAGING" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "AUTOMATIC BUG TRIAGING"

1

Liu, Yong, Xuexin Qi, Jiali Zhang, Hui Li, Xin Ge und Jun Ai. „Automatic Bug Triaging via Deep Reinforcement Learning“. Applied Sciences 12, Nr. 7 (31.03.2022): 3565. http://dx.doi.org/10.3390/app12073565.

Der volle Inhalt der Quelle
Annotation:
Software maintenance and evolution account for approximately 90% of the software development process (e.g., implementation, testing, and maintenance). Bug triaging refers to an activity where developers diagnose, fix, test, and document bug reports during software development and maintenance to improve the speed of bug repair and project progress. However, the large number of bug reports submitted daily increases the triaging workload, and open-source software has a long maintenance cycle. Meanwhile, the developer activity is not stable and changes significantly during software development. Hence, we propose a novel bug triaging model known as auto bug triaging via deep reinforcement learning (BT-RL), which comprises two models: a deep multi-semantic feature (DMSF) fusion model and an online dynamic matching (ODM) model. In the DMSF model, we extract relevant information from bug reports to obtain high-quality feature representation. In the ODM model, through bug report analysis and developer activities, we use a strategy based on the reinforcement learning framework, through which we perform training while learning and recommend developers for bug reports. Extensive experiments on open-source datasets show that the BT-RL method outperforms state-of-the-art methods in bug triaging.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Banerjee, Sean, Zahid Syed, Jordan Helmick, Mark Culp, Kenneth Ryan und Bojan Cukic. „Automated triaging of very large bug repositories“. Information and Software Technology 89 (September 2017): 1–13. http://dx.doi.org/10.1016/j.infsof.2016.09.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Xia, Xin, David Lo, Ying Ding, Jafar M. Al-Kofahi, Tien N. Nguyen und Xinyu Wang. „Improving Automated Bug Triaging with Specialized Topic Model“. IEEE Transactions on Software Engineering 43, Nr. 3 (01.03.2017): 272–97. http://dx.doi.org/10.1109/tse.2016.2576454.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Jose, Alphy. „An Automated Approach for Mapping Bug Reports to Source Code and Bug Triaging“. International Journal for Research in Applied Science and Engineering Technology 6, Nr. 6 (30.06.2018): 94–101. http://dx.doi.org/10.22214/ijraset.2018.6019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wu, Hongrun, Yutao Ma, Zhenglong Xiang, Chen Yang und Keqing He. „A spatial–temporal graph neural network framework for automated software bug triaging“. Knowledge-Based Systems 241 (April 2022): 108308. http://dx.doi.org/10.1016/j.knosys.2022.108308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zaidi, Syed Farhan Alam, Honguk Woo und Chan-Gun Lee. „Toward an Effective Bug Triage System Using Transformers to Add New Developers“. Journal of Sensors 2022 (08.04.2022): 1–19. http://dx.doi.org/10.1155/2022/4347004.

Der volle Inhalt der Quelle
Annotation:
As defects become more widespread in software development and advancement, bug triaging has become imperative for software testing and maintenance. The bug triage process assigns an appropriate developer to a bug report. Many automated and semiautomated systems have been proposed in the last decade, and some recent techniques have provided direction for developing an effective triage system. However, these techniques still require improvement. Another open challenge related to this problem is adding new developers to the existing triage system, which is challenging because the developers have no listed triage history. This paper proposes a transformer-based bug triage system that uses bidirectional encoder representation from transformers (BERT) for word representation. The proposed model can add a new developer to the existing system without building a training model from scratch. To add new developers, we assumed that new developers had a triage history created by a manual triager or human triage manager after learning their skills from the existing developer history. Then, the existing model was fine-tuned to add new developers using the manual triage history. Experiments were conducted using datasets from well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was used as a criterion for assessment. The experimental outcome suggests that the proposed triage system is better than other word-embedding-based triage methods for the bug triage problem. Additionally, the proposed method performs the best for adding new developers to an existing bug triage system without requiring retraining using a whole dataset.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Singla, Heena, Gitika Sharma und Sumit Sharma. „Domain Specific Automated Triaging System for Bug Classification“. Indian Journal of Science and Technology 9, Nr. 33 (16.09.2016). http://dx.doi.org/10.17485/ijst/2016/v9i33/97891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

„Improved Framework for Bug Severity Classification using N-gram Features with Convolution Neural Network“. International Journal of Recent Technology and Engineering 8, Nr. 3 (30.09.2019): 1190–96. http://dx.doi.org/10.35940/ijrte.c4292.098319.

Der volle Inhalt der Quelle
Annotation:
Foreseeing the seriousness/severity of bugs has been established in former research study in order to recover triaging and the process of bug resolution. Therefore, numerous prediction/classification methodologies were developed throughout the years to give an automated reasoning over the seriousness classes. Seriousness or severity is a significant trait of a bug that chooses how rapidly it ought to be measured. It causes designers to comprehend significant bugs on schedule. Though, manual evaluation of severity is a dreary activity and could be off base. This paper comprises of using the text/content mining together along with the use feature selection and bi-grams to improve the order of bugs in six classes. In the proposed methodology the features are refined by the use of convolution layers. Here, the process of convolution-based refining indicates mapping of the features utilizing non-linear methods of all the classes as compared to the existing methodologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "AUTOMATIC BUG TRIAGING"

1

SIROHI, RISHABH. „AN EFFICIENT MACHINE LEARNING TOOL FOR AUTOMATIC BUG TRIAGING“. Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19839.

Der volle Inhalt der Quelle
Annotation:
As technology advances at an exponential rate every day, the development and testing teams do their utmost to address problems as soon as they arise in order to meet customer deadlines. Finding the appropriate developer to address a specific bug is typically simple and quick in small organisations, but it can be challenging for large organisations to find the developer who will be able to address the bug quickly, which is one of the main tasks of bug triaging. In this report, we will examine numerous methods for automatically triaging bugs and attempt to identify the optimal method based on a series of research questions that will enable us to understand the statistical analysis of these methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "AUTOMATIC BUG TRIAGING"

1

Batista, Arthur, Fabricio D’Morison Marinho, Thiago Rocha, Wilson Oliveira Neto, Giovanni Antonaccio, Tainah Chaves, Diego Falcão, Flávia de S. Santos, Felipe T. Giuntini und Juliano Efson Sales. „Automated Bug Triaging in a Global Software Development Environment: An Industry Experience“. In Natural Language Processing and Information Systems, 160–71. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08473-7_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "AUTOMATIC BUG TRIAGING"

1

Tamrawi, Ahmed, Tung Thanh Nguyen, Jafar Al-Kofahi und Tien N. Nguyen. „Fuzzy set-based automatic bug triaging“. In Proceeding of the 33rd international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1985793.1985934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jain, Vibhor, Anand Rath und S. Ramaswamy. „Field weighting for automatic bug triaging systems“. In 2012 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2012. http://dx.doi.org/10.1109/icsmc.2012.6378180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wei, Miaomiao, Shikai Guo und Rong Chen. „Weighted Data Set Reduction for Automatic Bug Triaging (P)“. In The 30th International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc. and Knowledge Systems Institute Graduate School, 2018. http://dx.doi.org/10.18293/seke2018-053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chhabra, Deepshikha, Meena Malik und Sachin Sharma. „Literature survey on automatic bug triaging using machine learning techniques“. In INNOVATIONS IN COMPUTATIONAL AND COMPUTER TECHNIQUES: ICACCT-2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108585.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sirohi, Rishabh, und Priya Singh. „Automatic Bug Triaging Analysis using Machine Learning Techniques: A Review“. In 2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2022. http://dx.doi.org/10.1109/icict55121.2022.10064589.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ahmed, Iftekhar, Nitin Mohan und Carlos Jensen. „The Impact of Automatic Crash Reports on Bug Triaging and Development in Mozilla“. In OpenSym '14: The International Symposium on Open Collaboration. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2641580.2641585.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dedik, Vaclav, und Bruno Rossi. „Automated Bug Triaging in an Industrial Context“. In 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2016. http://dx.doi.org/10.1109/seaa.2016.20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gadge, Trupti S., und Nikhil Mangrulkar. „Approaches for automated bug triaging: A review“. In 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2017. http://dx.doi.org/10.1109/icimia.2017.7975592.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dunn, Tim, Natasha Kholgade Banerjee und Sean Banerjee. „GPU Acceleration of Document Similarity Measures for Automated Bug Triaging“. In 2016 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 2016. http://dx.doi.org/10.1109/issrew.2016.27.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Su, Yanqi, Zhenchang Xing, Xin Peng, Xin Xia, Chong Wang, Xiwei Xu und Liming Zhu. „Reducing Bug Triaging Confusion by Learning from Mistakes with a Bug Tossing Knowledge Graph“. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2021. http://dx.doi.org/10.1109/ase51524.2021.9678574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie