Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bacterial mechanosensing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bacterial mechanosensing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bacterial mechanosensing"
Chawla, Ravi, Rachit Gupta, Tanmay P. Lele und Pushkar P. Lele. „A Skeptic's Guide to Bacterial Mechanosensing“. Journal of Molecular Biology 432, Nr. 2 (Januar 2020): 523–33. http://dx.doi.org/10.1016/j.jmb.2019.09.004.
Der volle Inhalt der QuelleTala, Lorenzo, Xavier Pierrat und Alexandre Persat. „Bacterial Mechanosensing with Type IV Pili“. Biophysical Journal 114, Nr. 3 (Februar 2018): 3a. http://dx.doi.org/10.1016/j.bpj.2017.11.045.
Der volle Inhalt der QuelleLele, P. P., B. G. Hosu und H. C. Berg. „Dynamics of mechanosensing in the bacterial flagellar motor“. Proceedings of the National Academy of Sciences 110, Nr. 29 (01.07.2013): 11839–44. http://dx.doi.org/10.1073/pnas.1305885110.
Der volle Inhalt der QuelleStraub, Hervé, Claudio M. Bigger, Jules Valentin, Dominik Abt, Xiao‐Hua Qin, Leo Eberl, Katharina Maniura‐Weber und Qun Ren. „Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing?“ Advanced Healthcare Materials 8, Nr. 8 (18.02.2019): 1801323. http://dx.doi.org/10.1002/adhm.201801323.
Der volle Inhalt der QuelleGordon, Vernita D., und Liyun Wang. „Bacterial mechanosensing: the force will be with you, always“. Journal of Cell Science 132, Nr. 7 (01.04.2019): jcs227694. http://dx.doi.org/10.1242/jcs.227694.
Der volle Inhalt der QuelleHarapanahalli, Akshay K., Jessica A. Younes, Elaine Allan, Henny C. van der Mei und Henk J. Busscher. „Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment“. PLOS Pathogens 11, Nr. 8 (27.08.2015): e1005057. http://dx.doi.org/10.1371/journal.ppat.1005057.
Der volle Inhalt der QuelleMordue, James, Nicky O'Boyle, Nikolaj Gadegaard und Andrew J. Roe. „The force awakens: The dark side of mechanosensing in bacterial pathogens“. Cellular Signalling 78 (Februar 2021): 109867. http://dx.doi.org/10.1016/j.cellsig.2020.109867.
Der volle Inhalt der QuelleFajardo-Cavazos, Patricia, und Wayne L. Nicholson. „Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation“. Life 11, Nr. 1 (07.01.2021): 33. http://dx.doi.org/10.3390/life11010033.
Der volle Inhalt der QuelleNakayama, Yoshitaka. „Corynebacterium glutamicum Mechanosensing: From Osmoregulation to L-Glutamate Secretion for the Avian Microbiota-Gut-Brain Axis“. Microorganisms 9, Nr. 1 (19.01.2021): 201. http://dx.doi.org/10.3390/microorganisms9010201.
Der volle Inhalt der QuelleNirody, Jasmine A., Ashley L. Nord und Richard M. Berry. „Load-dependent adaptation near zero load in the bacterial flagellar motor“. Journal of The Royal Society Interface 16, Nr. 159 (02.10.2019): 20190300. http://dx.doi.org/10.1098/rsif.2019.0300.
Der volle Inhalt der QuelleDissertationen zum Thema "Bacterial mechanosensing"
Gong, Meihua. „Developing a new tool to purify methylated peptides from bacteria in order to study bacterial mechanosensing“. Electronic Thesis or Diss., Compiègne, 2023. http://www.theses.fr/2023COMP2749.
Der volle Inhalt der QuelleFlagella have been described as an important virulence factor for initial attachment to the host or to the surface of hospital equipment. However, how bacteria use their flagella to switch from a floating (planktonic) state to an immediately attached (sessile) state remains an open question. This transition involves flagellar mechanosensing or surface-sensing. It has been illustrated that lysine methylations in S. Typhimurium flagella facilitate bacterial adhesion to the surface or receptor via hydrophobicity. However, the study of the entire methylome, including non-histone methylation, remains a major challenge because of the lack of efficient methyl protein/peptide enrichment techniques. Here, to investigate protein methylation and its mechanisms in S. Typhimurium and its mutants, we applied two complementary strategies for methyl protein enrichment: aptamer-based enrichment technology and high pH SCXtips separation strategy. The specific DNA aptamers were obtained after performing several rounds of positive selection and one round of negative selection from a random oligonucleotide library through the FluMag-SELEX procedure. The selected ssDNA pools were sequenced and 10%, 11%, and 33% of redundant sequences for MML, DML, and TML, respectively have been observed. The highest redundancy was observed with oligonucleotides directed against TML. The interaction study of this aptamer with its target was then performed by the methods like ITC, PCR, and bead-based binding assays followed by mass spectrometry titration. The specificity was confirmed while the affinity was determined to be KD=2.48±0.14 mM. Then, the selected aptamer has been used as an enrichment tool based on the aptamer-bound beads method, in order to isolate methylated proteins or peptides on various cell lines. After the validation of our approach using a positive control (HEK293 cells), we identified 19 lysine methylation sites on 5 proteins from Salmonella Preliminary results from proteomic analysis confirmed that the selected aptamer was indeed able to distinguish and enrich methyllysine-containing proteins from S. Typhimurium strains and human cell lines. In parallel with this, the high pH SCXtips technology was performed as a complementary separation strategy when cultivating the strains in the hM-SILAC medium. Using this method, 23 unique methylation sites in ΔmetE, 51 unique methylation sites in ΔmetEΔmotAB, and 18 unique sites in ΔmetEΔfliB on 19 methylated proteins were identified. By comparing the differences in protein methylation, our results suggest that when bacteria lack motility, lysine methylations in bacterial proteins seem to be upregulated. Besides being methylated by the methylase FliB, a large number of methylation events could be regulated by other methylases