Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bernoulli number“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bernoulli number" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bernoulli number"
Chen, Kwang-Wu. „Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion“. Mathematics 10, Nr. 12 (12.06.2022): 2033. http://dx.doi.org/10.3390/math10122033.
Der volle Inhalt der QuelleJakimczuk, Rafael. „Sequences related to the e number and Bernoulli numbers“. Gulf Journal of Mathematics 11, Nr. 1 (09.08.2021): 38–42. http://dx.doi.org/10.56947/gjom.v11i1.666.
Der volle Inhalt der QuelleRawlings, Don. „Bernoulli Trials and Number Theory“. American Mathematical Monthly 101, Nr. 10 (Dezember 1994): 948. http://dx.doi.org/10.2307/2975160.
Der volle Inhalt der QuelleRawlings, Don. „Bernoulli Trials and Number Theory“. American Mathematical Monthly 101, Nr. 10 (Dezember 1994): 948–52. http://dx.doi.org/10.1080/00029890.1994.12004573.
Der volle Inhalt der QuelleKaneko, Masanobu. „Poly-Bernoulli numbers“. Journal de Théorie des Nombres de Bordeaux 9, Nr. 1 (1997): 221–28. http://dx.doi.org/10.5802/jtnb.197.
Der volle Inhalt der QuelleGradl, Hans, und Sebastian Walcher. „Bernoulli algebras“. Communications in Algebra 21, Nr. 10 (Januar 1993): 3503–20. http://dx.doi.org/10.1080/00927879308824745.
Der volle Inhalt der QuelleCaratelli, Diego, Pierpaolo Natalini und Paolo Emilio Ricci. „Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory“. Symmetry 15, Nr. 10 (10.10.2023): 1900. http://dx.doi.org/10.3390/sym15101900.
Der volle Inhalt der QuelleCRABB, M. C. „THE MIKI-GESSEL BERNOULLI NUMBER IDENTITY“. Glasgow Mathematical Journal 47, Nr. 2 (27.07.2005): 327–28. http://dx.doi.org/10.1017/s0017089505002545.
Der volle Inhalt der QuelleXu, Aimin. „Ramanujan’s Harmonic Number Expansion and Two Identities for Bernoulli Numbers“. Results in Mathematics 72, Nr. 4 (18.09.2017): 1857–64. http://dx.doi.org/10.1007/s00025-017-0748-7.
Der volle Inhalt der QuelleKargın, Levent. „p-Bernoulli and geometric polynomials“. International Journal of Number Theory 14, Nr. 02 (08.02.2018): 595–613. http://dx.doi.org/10.1142/s1793042118500665.
Der volle Inhalt der QuelleDissertationen zum Thema "Bernoulli number"
Chellali, Mustapha. „Congruences, nombres de Bernoulli et polynômes de Bessel“. Université Joseph Fourier (Grenoble ; 1971-2015), 1989. http://www.theses.fr/1989GRE10091.
Der volle Inhalt der QuelleWhitaker, Linda M. „The Bernoulli salesman“. Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/24935.
Der volle Inhalt der QuelleSmith, Michael J. „Ranking and selection : open sequential procedures for Bernoulli populations“. Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25103.
Der volle Inhalt der QuelleMartin, Bruno. „Contribution à la théorie des entiers friables“. Phd thesis, Université de Lorraine, 2005. http://tel.archives-ouvertes.fr/tel-00795666.
Der volle Inhalt der QuelleMirkoski, Maikon Luiz. „Números e polinômios de Bernoulli“. Universidade Estadual de Ponta Grossa, 2018. http://tede2.uepg.br/jspui/handle/prefix/2699.
Der volle Inhalt der QuelleMade available in DSpace on 2018-11-29T18:07:06Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Maikon Luiz.pdf: 959643 bytes, checksum: aaf472f5b8a9a29532793d01234788a9 (MD5) Previous issue date: 2018-10-19
Neste trabalho,estudamos os números e os polinomios de Bernoulli,bem como algumas de suas aplicações mais importantes em Teoria dos Números. Com base em uma caracterização ao simples, os polinômios de Bernoulli são introduzidos e, posteriormente, os números de Bernoulli. As séries de Fourier dos polinomios de Bernoulli são utilizadas na demonstração da equação funcional da função teta. Esta equação, por sua vez, é utilizada na demonstração da celebre equação funcional da função zeta, que tem importância central na teoria da distribuição dos números primos. Além das conexões com a funções especiais zeta e teta, discutimos também, em detalhe,conexões entre os números e os polinomios de Bernoulli com a função gama. Essas relações são então exploradas para produzir belas fórmulas para certos valores da função zeta, entre outras aplicações.
In this work we study Bernoulli numbers and Bernoulli polynomials, as well as some of its most important applications in Number Theory. Based on a simple characterization, the Bernoulli polynomials are introduced and, later, the Bernoulli numbers. The Fourier series of the Bernoulli polynomials are used to demonstrate the functional equation of the theta function. This equation, in turn, is used in the proof of the famous functional equation of the zeta function, which is central to the theory of prime number distribution. In addition to the connections with the special functions zeta and theta, we also discuss, in detail, connections between the Bernoulli numbers and Bernoulli polynomials with the gamma function. These relations are then explored to produce beautiful formulas for certain values of the zeta function,among other applications.
Stacey, Andrew W. „An Adaptive Bayesian Approach to Bernoulli-Response Clinical Trials“. CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2065.pdf.
Der volle Inhalt der QuelleKondo, Pedro Kiochi. „CÁLCULO FINITO: DEMONSTRAÇÕES E APLICAÇÕES“. UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2014. http://tede2.uepg.br/jspui/handle/prefix/1528.
Der volle Inhalt der QuelleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work some topics of the Discrete or Finite Calculus are developed. In particular, we study difference operators, factorial powers, Stirling numbers of the first and second type, the Newton’s formula of differences, the fundamental theorem of the Finite Calculus, the summation process, and the Bernoulli numbers and Bernoulli polynomials. Then we show the effectiveness of the theory for the calculation of closed formulas for the value of many finite sums. We also study the classical problem of obtaining the polynomials which express the value of the sums of powers of natural numbers.
Neste trabalho desenvolvemos alguns tópicos do Cálculo Discreto ou Finito. Em particular, estudamos operadores de diferenças, potências fatoriais, números de Stirling do primeiro e do segundo tipo, a fórmula de diferenças de Newton, o teorema fundamental do Cálculo Finito, o processo de somação e os números e polinômios de Bernoulli. Mostramos então a eficácia da teoria no cálculo de fórmulas fechadas para o valor de diversas somas finitas. Também estudamos o problema clássico de obter os polinômios que expressam o valor de somas de potências de números naturais.
Perkins, Rudolph Bronson. „On Special Values of Pellarin’s L-series“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1383827548.
Der volle Inhalt der QuelleChung, Yi-Shiu, und 鍾逸修. „The Calculation and Application of Bernoulli number“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/84502958840518031848.
Der volle Inhalt der Quelle國立臺中教育大學
數學教育學系
96
Up to the present, it is an important study for calculating Bernoulli number. There are many different methods to claculate Bernoulli number. But for these methods, we must take lots of steps to calaulate Bernoulli number. Based on this, our research applies Riemann--zeta function and the extended function of the sums of powers of consecutive integers to get an easier method. Then, we will calculate Bernoulli number by using Matlab 7.1, and investigate the relationship between Bernoulli nmuber and Stirling number of second kind. Our results are as follows. 1. The formula of Bernoulli number is B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1}S_{1}^{\prime}(-1) + \sum_{i=1}^{k}C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \}, k\in N . 2. When $k$ is bigger, Bernoulli number will become bigger and be alternated between plus and minus. 3. The relationship between Bernoulli number and Stirling number of second kind is B_{m+1}=\sum_{k=1}^{m+1}\frac{(-1)^k}{k+1}\cdot k!\cdot S_2(m+1,k).
Liu, Chih Shiuan, und 劉志璿. „The connection between the functions of Riemann zeta and Bernoulli Number“. Thesis, 2008. http://ndltd.ncl.edu.tw/handle/17154599310613619902.
Der volle Inhalt der Quelle國立臺中教育大學
數學教育學系
96
This research hung over from the extended functions for the sum of powers of consecutive integers, we colleted the literatures of the related research about the functions of Riemann zeta and Bernoulli Number, both newly interpreted and predigested the properties of the functions of Riemann zeta and Bernoulli Number. Thus we built the connection between the functions of Riemann zeta and Bernoulli Number, according to \zeta(2 k)=(-1)^{k-1} 2^{2k-1} \frac{B_{2k} \pi^{2k}}{(2k)!}, \ k \in \mathbb{N},and S_{2k}^{\prime}(-1)=\frac{(-1)^{k-1} (2k)!}{2^{2k-1} (\pi)^{2k}}\zeta(2k), S_{2k+1}^{\prime}(-1)=0,Take the function of Riemann zeta as bridge, we find that S_{2k}^{\prime}(-1)=B_{2k},B_{2k}=\frac{1}{2k+1} \left \{ C_{2k}^{2k+1} S_{1}^{\prime}(-1)+ \sum_{i=1}^{k} C_{2i+1}^{2k+1} S_{2k-2i}^{\prime}(-1) \right \},where $S_k^{\prime}(x)$ denotes the first derivative of $S_k(x)$ for each positive integer $k$.
Bücher zum Thema "Bernoulli number"
1954-, Dilcher Karl, Skula Ladislav und Slavutskiĭ Ilja Sh, Hrsg. Bernoulli numbers: Bibliography (1713-1990). Kingston, Ont: Queen's University, 1991.
Den vollen Inhalt der Quelle findenArakawa, Tsuneo, Tomoyoshi Ibukiyama und Masanobu Kaneko. Bernoulli Numbers and Zeta Functions. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2.
Der volle Inhalt der Quelleauthor, Ibukiyama Tomoyoshi, Kaneko Masanobu author und Zagier, Don, 1951- writer of supplementary textual content, Hrsg. Bernoulli numbers and Zeta functions. Tokyo: Springer, 2014.
Den vollen Inhalt der Quelle findenKanemitsu, Shigeru. Vistas of special functions. Singapore: World Scientific, 2007.
Den vollen Inhalt der Quelle findenInvitation to classical analysis. Providence, R.I: American Mathematical Society, 2012.
Den vollen Inhalt der Quelle findenVistas of Special Functions. World Scientific Publishing Company, 2007.
Den vollen Inhalt der Quelle findenVorlesungen über die Bernoullischen zahlen: Ihren zusammenhang mit den secanten-coefficienten und ihre wichtigeren anwendungen. Berlin: J. Springer, 1991.
Den vollen Inhalt der Quelle findenIbukiyama, Tomoyoshi, Masanobu Kaneko, Tsuneo Arakawa und Don B. Zagier. Bernoulli Numbers and Zeta Functions. Springer, 2016.
Den vollen Inhalt der Quelle findenIbukiyama, Tomoyoshi, Masanobu Kaneko und Tsuneo Arakawa. Bernoulli Numbers and Zeta Functions. Springer, 2014.
Den vollen Inhalt der Quelle findenFranzosa, Marie M. Densities and dependence for point processes. 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bernoulli number"
Ireland, Kenneth, und Michael Rosen. „Bernoulli Numbers“. In A Classical Introduction to Modern Number Theory, 228–48. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_15.
Der volle Inhalt der QuelleSimsek, Yilmaz. „Families of Twisted Bernoulli Numbers, Twisted Bernoulli Polynomials, and Their Applications“. In Analytic Number Theory, Approximation Theory, and Special Functions, 149–214. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0258-3_6.
Der volle Inhalt der QuelleSándor, J., und B. Crstici. „Stirling, bell, bernoulli, euler and eulerian numbers“. In Handbook of Number Theory II, 459–618. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2547-5_5.
Der volle Inhalt der QuelleIbukiyama, Tomoyoshi, und Masanobu Kaneko. „Class Number Formula and an Easy Zeta Function of the Space of Quadratic Forms“. In Bernoulli Numbers and Zeta Functions, 155–82. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2_10.
Der volle Inhalt der QuelleWagstaff, Samuel S. „Prime Divisors of the Bernoulli and Euler Numbers“. In Number Theory for the Millennium III, 357–74. London: A K Peters/CRC Press, 2023. http://dx.doi.org/10.1201/9780138747022-21.
Der volle Inhalt der QuelleIsaacson, Brad. „Generalized Bernoulli Numbers, Cotangent Power Sums, and Higher-Order Arctangent Numbers“. In Combinatorial and Additive Number Theory V, 253–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10796-2_12.
Der volle Inhalt der QuelleAdam, David, und Jean-Luc Chabert. „Bhargava’s Exponential Functions and Bernoulli Numbers Associated to the Set of Prime Numbers“. In Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 9–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28847-0_2.
Der volle Inhalt der QuelleChryssaphinou, O., S. Papastavridis und T. Tsapelas. „On the Number of Overlapping Success Runs in a Sequence of Independent Bernoulli Trials“. In Applications of Fibonacci Numbers, 103–12. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2058-6_10.
Der volle Inhalt der QuelleIbukiyama, Tomoyoshi, und Masanobu Kaneko. „Bernoulli Numbers“. In Bernoulli Numbers and Zeta Functions, 1–24. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54919-2_1.
Der volle Inhalt der QuelleRibenboim, Paulo. „Bernoulli Numbers“. In Classical Theory of Algebraic Numbers, 367–97. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-0-387-21690-4_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bernoulli number"
Campos, Richard A., Malvin C. Teich und B. E. A. Saleh. „Homodyne photon-number statistics for nonclassical states of light at a lossless beam splitter“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thii6.
Der volle Inhalt der QuelleDelande, E. D., D. E. Clark und J. Houssineau. „Regional variance in target number: Analysis and application for multi-Bernoulli point processes“. In IET Conference on Data Fusion & Target Tracking 2014: Algorithms and Applications. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.0531.
Der volle Inhalt der QuelleKuo, Y. L., und W. L. Cleghorn. „Curvature-Based Finite Element Method for Euler-Bernoulli Beams“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34213.
Der volle Inhalt der QuelleChih-Wei Yi, Peng-Jun Wan, Xiang-Yang Li und O. Frieder. „Asymptotic distribution of the number of isolated nodes in wireless ad hoc networks with Bernoulli nodes“. In WCNC 2003 - IEEE Wireless Communications and Networking Conference. IEEE, 2003. http://dx.doi.org/10.1109/wcnc.2003.1200623.
Der volle Inhalt der QuelleKatariya, Sumeet, Branislav Kveton, Csaba Szepesvári, Claire Vernade und Zheng Wen. „Bernoulli Rank-1 Bandits for Click Feedback“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/278.
Der volle Inhalt der QuelleIshihata, Masakazu, und Takanori Maehara. „Exact Bernoulli Scan Statistics using Binary Decision Diagrams“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/795.
Der volle Inhalt der QuelleTeng, Shen, Wang Jiong, Sun Dong, Liu Yafeng und Tian Zhouyu. „Modeling and Numerical Simulation of Flow Resistance Characteristics in Slowly-Varying Rectangular Cross-Section Microchannel“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65257.
Der volle Inhalt der QuelleCaddemi, Salvatore, und Ivo Calio`. „Closed Form Buckling Solutions of Euler-Bernoulli Columns With Multiple Singularities“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11168.
Der volle Inhalt der QuelleYong, Yan. „Vibration of Euler-Bernoulli Beams With Arbitrary Boundaries and Intermediate Constraints“. In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0284.
Der volle Inhalt der QuelleNaguleswaran, S. „Vibration of an Euler-Bernoulli Uniform Beam Carrying Several Thin Disks“. In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48361.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bernoulli number"
Pengelley, David. Figurate Numbers and Sums of Numerical Powers: Fermat, Pascal, Bernoulli. Washington, DC: The MAA Mathematical Sciences Digital Library, Juni 2013. http://dx.doi.org/10.4169/loci003987.
Der volle Inhalt der QuelleKlammler, Harald. Introduction to the Mechanics of Flow and Transport for Groundwater Scientists. The Groundwater Project, 2023. http://dx.doi.org/10.21083/gxat7083.
Der volle Inhalt der Quelle