Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Bernoulli number.

Zeitschriftenartikel zum Thema „Bernoulli number“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Bernoulli number" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Chen, Kwang-Wu. „Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion“. Mathematics 10, Nr. 12 (12.06.2022): 2033. http://dx.doi.org/10.3390/math10122033.

Der volle Inhalt der Quelle
Annotation:
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expansions for the nth harmonic number. For example, Hn∼γ+12log(q+13)−1180(q+13)2∑j=0∞bj(r)(q+13)j1/r as n approaches infinity, where bj(r) can be determined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jakimczuk, Rafael. „Sequences related to the e number and Bernoulli numbers“. Gulf Journal of Mathematics 11, Nr. 1 (09.08.2021): 38–42. http://dx.doi.org/10.56947/gjom.v11i1.666.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rawlings, Don. „Bernoulli Trials and Number Theory“. American Mathematical Monthly 101, Nr. 10 (Dezember 1994): 948. http://dx.doi.org/10.2307/2975160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rawlings, Don. „Bernoulli Trials and Number Theory“. American Mathematical Monthly 101, Nr. 10 (Dezember 1994): 948–52. http://dx.doi.org/10.1080/00029890.1994.12004573.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Kaneko, Masanobu. „Poly-Bernoulli numbers“. Journal de Théorie des Nombres de Bordeaux 9, Nr. 1 (1997): 221–28. http://dx.doi.org/10.5802/jtnb.197.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gradl, Hans, und Sebastian Walcher. „Bernoulli algebras“. Communications in Algebra 21, Nr. 10 (Januar 1993): 3503–20. http://dx.doi.org/10.1080/00927879308824745.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Caratelli, Diego, Pierpaolo Natalini und Paolo Emilio Ricci. „Fractional Bernoulli and Euler Numbers and Related Fractional Polynomials—A Symmetry in Number Theory“. Symmetry 15, Nr. 10 (10.10.2023): 1900. http://dx.doi.org/10.3390/sym15101900.

Der volle Inhalt der Quelle
Annotation:
Bernoulli and Euler numbers and polynomials are well known and find applications in various areas of mathematics, such as number theory, combinatorial mathematics, series expansions, and the theory of special functions. Using fractional exponential functions, we extend the classical Bernoulli and Euler numbers and polynomials to introduce their fractional-index-based types. This reveals a symmetry in relation to the classical numbers and polynomials. We demonstrate some examples of these generalized mathematical entities, which we derive using the computer algebra system Mathematica©.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

CRABB, M. C. „THE MIKI-GESSEL BERNOULLI NUMBER IDENTITY“. Glasgow Mathematical Journal 47, Nr. 2 (27.07.2005): 327–28. http://dx.doi.org/10.1017/s0017089505002545.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xu, Aimin. „Ramanujan’s Harmonic Number Expansion and Two Identities for Bernoulli Numbers“. Results in Mathematics 72, Nr. 4 (18.09.2017): 1857–64. http://dx.doi.org/10.1007/s00025-017-0748-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kargın, Levent. „p-Bernoulli and geometric polynomials“. International Journal of Number Theory 14, Nr. 02 (08.02.2018): 595–613. http://dx.doi.org/10.1142/s1793042118500665.

Der volle Inhalt der Quelle
Annotation:
We relate geometric polynomials and [Formula: see text]-Bernoulli polynomials with an integral representation, then obtain several properties of [Formula: see text]-Bernoulli polynomials. These results yield new identities for Bernoulli numbers. Moreover, we evaluate a Faulhaber-type summation in terms of [Formula: see text]-Bernoulli polynomials. Finally, we introduce poly-[Formula: see text]-Bernoulli polynomials and numbers, then study some arithmetical and number theoretical properties of them.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Beck, Matthias, und Anastasia Chavez. „Bernoulli–Dedekind sums“. Acta Arithmetica 149, Nr. 1 (2011): 65–82. http://dx.doi.org/10.4064/aa149-1-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hayes, Ben. „Harmonic models and Bernoullicity“. Compositio Mathematica 157, Nr. 10 (19.08.2021): 2160–98. http://dx.doi.org/10.1112/s0010437x21007442.

Der volle Inhalt der Quelle
Annotation:
We give many examples of algebraic actions which are factors of Bernoulli shifts. These include certain harmonic models over left-orderable groups of large enough growth, as well as algebraic actions associated to certain lopsided elements in any left-orderable group. For many of our examples, the acting group is amenable so these actions are Bernoulli (and not just a factor of a Bernoulli), but there is no obvious Bernoulli partition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

KAMANO, KEN. „p-ADIC q-BERNOULLI NUMBERS AND THEIR DENOMINATORS“. International Journal of Number Theory 04, Nr. 06 (Dezember 2008): 911–25. http://dx.doi.org/10.1142/s179304210800181x.

Der volle Inhalt der Quelle
Annotation:
We define p-adic q-Bernoulli numbers by using a p-adic integral. These numbers have good properties similar to those of the classical Bernoulli numbers. In particular, they satisfy an analogue of the von Staudt–Clausen theorem, which includes information of denominators of p-adic q-Bernoulli numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

DAI, LEI, und HAO PAN. „CLOSED FORMS FOR DEGENERATE BERNOULLI POLYNOMIALS“. Bulletin of the Australian Mathematical Society 101, Nr. 2 (10.01.2020): 207–17. http://dx.doi.org/10.1017/s0004972719001266.

Der volle Inhalt der Quelle
Annotation:
Qi and Chapman [‘Two closed forms for the Bernoulli polynomials’, J. Number Theory159 (2016), 89–100] gave a closed form expression for the Bernoulli polynomials as polynomials with coefficients involving Stirling numbers of the second kind. We extend the formula to the degenerate Bernoulli polynomials, replacing the Stirling numbers by degenerate Stirling numbers of the second kind.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Jha, Sumit Kumar. „A new explicit formula for Bernoulli numbers involving the Euler number“. Moscow Journal of Combinatorics and Number Theory 8, Nr. 4 (11.10.2019): 385–87. http://dx.doi.org/10.2140/moscow.2019.8.389.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jan A. Grzesik. „Contour Integration Underlies Fundamental Bernoulli Number Recurrence“. Real Analysis Exchange 41, Nr. 2 (2016): 351. http://dx.doi.org/10.14321/realanalexch.41.2.0351.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chen, Kwang-Wu. „A summation on Bernoulli numbers“. Journal of Number Theory 111, Nr. 2 (April 2005): 372–91. http://dx.doi.org/10.1016/j.jnt.2004.08.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Slavutskii, I. S. „A Note On Bernoulli Numbers“. Journal of Number Theory 53, Nr. 2 (August 1995): 309–10. http://dx.doi.org/10.1006/jnth.1995.1093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bayad, Abdelmejid, und Matthias Beck. „Relations for Bernoulli–Barnes numbers and Barnes zeta functions“. International Journal of Number Theory 10, Nr. 05 (15.07.2014): 1321–35. http://dx.doi.org/10.1142/s1793042114500298.

Der volle Inhalt der Quelle
Annotation:
The Barnes ζ-function is [Formula: see text] defined for [Formula: see text], Re (x) > 0, and Re (z) > n and continued meromorphically to ℂ. Specialized at negative integers -k, the Barnes ζ-function gives [Formula: see text] where Bk(x; a) is a Bernoulli–Barnes polynomial, which can be also defined through a generating function that has a slightly more general form than that for Bernoulli polynomials. Specializing Bk(0; a) gives the Bernoulli–Barnes numbers. We exhibit relations among Barnes ζ-functions, Bernoulli–Barnes numbers and polynomials, which generalize various identities of Agoh, Apostol, Dilcher, and Euler.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kim, Taekyun, und Seog-Hoon Rim. „A note on p-adic Carlitz's q-Bernoulli numbers“. Bulletin of the Australian Mathematical Society 62, Nr. 2 (Oktober 2000): 227–34. http://dx.doi.org/10.1017/s0004972700018700.

Der volle Inhalt der Quelle
Annotation:
In a recent paper I have shown that Carlitz's q-Bernoulli number can be represented as an integral by the q-analogue μq of the ordinary p-adic invariant measure. In the p-adic case, J. Satoh could not determine the generating function of q-Bernoulli numbers. In this paper, we give the generating function of q-Bernoulli numbers in the p-adic case.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bényi, Beáta, und Péter Hajnal. „Combinatorics of poly-Bernoulli numbers“. Studia Scientiarum Mathematicarum Hungarica 52, Nr. 4 (Dezember 2015): 537–58. http://dx.doi.org/10.1556/012.2015.52.4.1325.

Der volle Inhalt der Quelle
Annotation:
The Bn(k) poly-Bernoulli numbers — a natural generalization of classical Bernoulli numbers (Bn = Bn(1)) — were introduced by Kaneko in 1997. When the parameter k is negative then Bn(k) is a nonnegative number. Brewbaker was the first to give combinatorial interpretation of these numbers. He proved that Bn(−k) counts the so called lonesum 0–1 matrices of size n × k. Several other interpretations were pointed out. We survey these and give new ones. Our new interpretation, for example, gives a transparent, combinatorial explanation of Kaneko’s recursive formula for poly-Bernoulli numbers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Maulidi, Ikhsan, Vina Apriliani und Muhamad Syazali. „Fungsi Zeta Riemann Genap Menggunakan Bilangan Bernoulli“. Desimal: Jurnal Matematika 2, Nr. 1 (04.02.2019): 43–47. http://dx.doi.org/10.24042/djm.v2i1.3589.

Der volle Inhalt der Quelle
Annotation:
In this article, we study about the value of Riemann Zeta Function for even numbers using Bernoulli number. First, we give some basic theory about Bernoulli number and Riemann Zeta function. The method that used in this research was literature study. From our analysis, we have a theorem to evaluate the value of Riemann Zeta function for the even numbers with its proving.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Caira, R., und F. Dell'Accio. „Shepard--Bernoulli operators“. Mathematics of Computation 76, Nr. 257 (01.01.2007): 299–322. http://dx.doi.org/10.1090/s0025-5718-06-01894-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Wang, Weiping. „Generalized higher order Bernoulli number pairs and generalized Stirling number pairs“. Journal of Mathematical Analysis and Applications 364, Nr. 1 (April 2010): 255–74. http://dx.doi.org/10.1016/j.jmaa.2009.10.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ait Aoudia, Djilali, und Éric Marchand. „On the number of runs for Bernoulli arrays“. Journal of Applied Probability 47, Nr. 2 (Juni 2010): 367–77. http://dx.doi.org/10.1239/jap/1276784897.

Der volle Inhalt der Quelle
Annotation:
We introduce and motivate the study of (n + 1) × r arrays X with Bernoulli entries Xk,j and independently distributed rows. We study the distribution of which denotes the number of consecutive pairs of successes (or runs of length 2) when reading the array down the columns and across the rows. With the case r = 1 having been studied by several authors, and permitting some initial inferences for the general case r > 1, we examine various distributional properties and representations of Sn for the case r = 2, and, using a more explicit analysis, the case of multinomial and identically distributed rows. Applications are also given in cases where the array X arises from a Pólya sampling scheme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Ait Aoudia, Djilali, und Éric Marchand. „On the number of runs for Bernoulli arrays“. Journal of Applied Probability 47, Nr. 02 (Juni 2010): 367–77. http://dx.doi.org/10.1017/s0021900200006690.

Der volle Inhalt der Quelle
Annotation:
We introduce and motivate the study of (n + 1) × r arrays X with Bernoulli entries X k,j and independently distributed rows. We study the distribution of which denotes the number of consecutive pairs of successes (or runs of length 2) when reading the array down the columns and across the rows. With the case r = 1 having been studied by several authors, and permitting some initial inferences for the general case r > 1, we examine various distributional properties and representations of S n for the case r = 2, and, using a more explicit analysis, the case of multinomial and identically distributed rows. Applications are also given in cases where the array X arises from a Pólya sampling scheme.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kulkarni, Manisha, und B. Sury. „Diophantine equations with Bernoulli polynomials“. Acta Arithmetica 116, Nr. 1 (2005): 25–34. http://dx.doi.org/10.4064/aa116-1-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shea, Stephen. „Finitarily Bernoulli factors are dense“. Fundamenta Mathematicae 223, Nr. 1 (2013): 49–54. http://dx.doi.org/10.4064/fm223-1-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Fu, Amy M., Hao Pan und Iris F. Zhang. „Symmetric identities on Bernoulli polynomials“. Journal of Number Theory 129, Nr. 11 (November 2009): 2696–701. http://dx.doi.org/10.1016/j.jnt.2009.05.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sun, Zhi-Hong. „Super congruences concerning Bernoulli polynomials“. International Journal of Number Theory 11, Nr. 08 (05.11.2015): 2393–404. http://dx.doi.org/10.1142/s1793042115501110.

Der volle Inhalt der Quelle
Annotation:
Let p > 3 be a prime, and let a be a rational p-adic integer. Let {Bn(x)} denote the Bernoulli polynomials given by B0= 1, [Formula: see text] and [Formula: see text]. In this paper, using Bernoulli polynomials we establish congruences for [Formula: see text] and [Formula: see text]. As a consequence we solve the following conjecture of Z. W. Sun: [Formula: see text] where [Formula: see text].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Thangadurai, R. „Adams theorem on Bernoulli numbers revisited“. Journal of Number Theory 106, Nr. 1 (Mai 2004): 169–77. http://dx.doi.org/10.1016/j.jnt.2003.12.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Agoh, Takashi, und Karl Dilcher. „Higher-order recurrences for Bernoulli numbers“. Journal of Number Theory 129, Nr. 8 (August 2009): 1837–47. http://dx.doi.org/10.1016/j.jnt.2009.02.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Dilcher, Karl. „Sums of Products of Bernoulli Numbers“. Journal of Number Theory 60, Nr. 1 (September 1996): 23–41. http://dx.doi.org/10.1006/jnth.1996.0110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Huang, I.-Chiau, und Su-Yun Huang. „Bernoulli Numbers and Polynomials via Residues“. Journal of Number Theory 76, Nr. 2 (Juni 1999): 178–93. http://dx.doi.org/10.1006/jnth.1998.2364.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

HASSEN, ABDUL, und HIEU D. NGUYEN. „HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES“. International Journal of Number Theory 04, Nr. 05 (Oktober 2008): 767–74. http://dx.doi.org/10.1142/s1793042108001754.

Der volle Inhalt der Quelle
Annotation:
There are two analytic approaches to Bernoulli polynomials Bn(x): either by way of the generating function zexz/(ez - 1) = ∑ Bn(x)zn/n! or as an Appell sequence with zero mean. In this article, we discuss a generalization of Bernoulli polynomials defined by the generating function zN exz/(ez - TN-1(z)), where TN(z) denotes the Nth Maclaurin polynomial of ez, and establish an equivalent definition in terms of Appell sequences with zero moments in complete analogy to their classical counterpart. The zero-moment condition is further shown to generalize to Bernoulli polynomials generated by the confluent hypergeometric series.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Young, Paul Thomas. „Bernoulli and poly-Bernoulli polynomial convolutions and identities of p-adic Arakawa–Kaneko zeta functions“. International Journal of Number Theory 12, Nr. 05 (10.05.2016): 1295–309. http://dx.doi.org/10.1142/s1793042116500792.

Der volle Inhalt der Quelle
Annotation:
We evaluate the ordinary convolution of Bernoulli polynomials in closed form in terms of poly-Bernoulli polynomials. As applications we derive identities for [Formula: see text]-adic Arakawa–Kaneko zeta functions, including a [Formula: see text]-adic analogue of Ohno’s sum formula. These [Formula: see text]-adic identities serve to illustrate the relationships between real periods and their [Formula: see text]-adic analogues.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Raza, Mohsan, Mehak Tariq, Jong-Suk Ro, Fairouz Tchier und Sarfraz Nawaz Malik. „Starlike Functions Associated with Bernoulli’s Numbers of Second Kind“. Axioms 12, Nr. 8 (03.08.2023): 764. http://dx.doi.org/10.3390/axioms12080764.

Der volle Inhalt der Quelle
Annotation:
The aim of this paper is to introduce a class of starlike functions that are related to Bernoulli’s numbers of the second kind. Let φBS(ξ)=ξeξ−12=∑n=0∞ξnBn2n!, where the coefficients of Bn2 are Bernoulli numbers of the second kind. Then, we introduce a subclass of starlike functions 𝟊 such that ξ𝟊′(ξ)𝟊(ξ)≺φBS(ξ). We found out the coefficient bounds, several radii problems, structural formulas, and inclusion relations. We also found sharp Hankel determinant problems of this class.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tanner, Jonathan W., und Samuel S. Wagstaff. „New congruences for the Bernoulli numbers“. Mathematics of Computation 48, Nr. 177 (01.01.1987): 341. http://dx.doi.org/10.1090/s0025-5718-1987-0866120-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Sun, Zhi-Wei, und Hao Pan. „Identities concerning Bernoulli and Euler polynomials“. Acta Arithmetica 125, Nr. 1 (2006): 21–39. http://dx.doi.org/10.4064/aa125-1-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Dilcher, Karl. „On multiple zeros of Bernoulli polynomials“. Acta Arithmetica 134, Nr. 2 (2008): 149–55. http://dx.doi.org/10.4064/aa134-2-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Komatsu, Takao, und Florian Luca. „Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials“. International Journal of Number Theory 13, Nr. 02 (07.02.2017): 371–91. http://dx.doi.org/10.1142/s1793042117500221.

Der volle Inhalt der Quelle
Annotation:
By using the restricted and associated Stirling numbers of the first kind, we define the generalized restricted and associated poly-Cauchy polynomials. By using the restricted and associated Stirling numbers of the second kind, we define the generalized restricted and associated poly-Bernoulli polynomials. These polynomials are generalizations of original poly-Cauchy polynomials and original poly-Bernoulli polynomials, respectively. We also study their characteristic and combinatorial properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhang, Jing, Lixia Zhang und Caishi Wang. „Probabilistic Interpretation of Number Operator Acting on Bernoulli Functionals“. Mathematics 10, Nr. 15 (27.07.2022): 2635. http://dx.doi.org/10.3390/math10152635.

Der volle Inhalt der Quelle
Annotation:
Let N be the number operator in the space H of real-valued square-integrable Bernoulli functionals. In this paper, we further pursue properties of N from a probabilistic perspective. We first construct a nuclear space G, which is also a dense linear subspace of H, and then by taking its dual G*, we obtain a real Gel’fand triple G⊂H⊂G*. Using the well-known Minlos theorem, we prove that there exists a unique Gauss measure γN on G* such that its covariance operator coincides with N. We examine the properties of γN, and, among others, we show that γN can be represented as a convolution of a sequence of Borel probability measures on G*. Some other results are also obtained.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Yang, Jizhen, und Yunpeng Wang. „Congruences involving generalized Catalan numbers and Bernoulli numbers“. AIMS Mathematics 8, Nr. 10 (2023): 24331–44. http://dx.doi.org/10.3934/math.20231240.

Der volle Inhalt der Quelle
Annotation:
<abstract><p>In this paper, we establish some congruences mod $ p^3 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l} $, where $ p &gt; 3 $ is a prime number and $ B_{p, k} $ are generalized Catalan numbers. We also establish some congruences mod $ p^2 $ involving the sums $ \sum_{k = 1}^{p-1}k^mB_{p, k}^{2l_1}B_{p, k-d}^{2l_2} $, where $ m, l_1, l_2, d $ are positive integers and $ 1\leq d\leq p-1 $.</p></abstract>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kim, Taekyun. „q-Bernoulli Numbers Associated with q-Stirling Numbers“. Advances in Difference Equations 2008 (2008): 1–11. http://dx.doi.org/10.1155/2008/743295.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Lundell, Albert T. „On the denominator of generalized Bernoulli numbers“. Journal of Number Theory 26, Nr. 1 (Mai 1987): 79–88. http://dx.doi.org/10.1016/0022-314x(87)90097-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Gekeler, Ernst-Ulrich. „Some new identities for Bernoulli-Carlitz numbers“. Journal of Number Theory 33, Nr. 2 (Oktober 1989): 209–19. http://dx.doi.org/10.1016/0022-314x(89)90007-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

XIA, BINZHOU, und TIANXIN CAI. „BERNOULLI NUMBERS AND CONGRUENCES FOR HARMONIC SUMS“. International Journal of Number Theory 06, Nr. 04 (Juni 2010): 849–55. http://dx.doi.org/10.1142/s1793042110003265.

Der volle Inhalt der Quelle
Annotation:
Zhao established the following harmonic congruence for prime p > 3: [Formula: see text] In this note, the authors improve it to the following congruence for prime p > 5: [Formula: see text] Meanwhile, they also improve a generalization of Zhao's congruence and extend Eisenstein's congruence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Adelberg, Arnold. „Congruences ofp-adic Integer Order Bernoulli Numbers“. Journal of Number Theory 59, Nr. 2 (August 1996): 374–88. http://dx.doi.org/10.1006/jnth.1996.0103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Satoh, Junya. „Sums of Products of Twoq-Bernoulli Numbers“. Journal of Number Theory 74, Nr. 2 (Februar 1999): 173–80. http://dx.doi.org/10.1006/jnth.1998.2331.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Young, Paul Thomas. „Congruences for Bernoulli, Euler, and Stirling Numbers“. Journal of Number Theory 78, Nr. 2 (Oktober 1999): 204–27. http://dx.doi.org/10.1006/jnth.1999.2401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie