Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „BI-DIRECTIONAL GRATED RECURRENT UNIT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT"
Han, Tian, Zhu Zhang, Mingyuan Ren, Changchun Dong, Xiaolin Jiang und Quansheng Zhuang. „Speech Emotion Recognition Based on Deep Residual Shrinkage Network“. Electronics 12, Nr. 11 (02.06.2023): 2512. http://dx.doi.org/10.3390/electronics12112512.
Der volle Inhalt der QuelleAkalya, Devi C., Renuka D. Karthika, T. Harisudhan, V. K. Jeevanantham, J. Jhanani und Varshini S. Kavi. „Text emotion recognition using fast text word embedding in bi-directional gated recurrent unit“. i-manager's Journal on Information Technology 11, Nr. 4 (2022): 1. http://dx.doi.org/10.26634/jit.11.4.19119.
Der volle Inhalt der QuelleZhang, Xue, Helmut Kuehnelt und Wim De Roeck. „Traffic Noise Prediction Applying Multivariate Bi-Directional Recurrent Neural Network“. Applied Sciences 11, Nr. 6 (18.03.2021): 2714. http://dx.doi.org/10.3390/app11062714.
Der volle Inhalt der QuelleAppati, Justice Kwame, Ismail Wafaa Denwar, Ebenezer Owusu und Michael Agbo Tettey Soli. „Construction of an Ensemble Scheme for Stock Price Prediction Using Deep Learning Techniques“. International Journal of Intelligent Information Technologies 17, Nr. 2 (April 2021): 72–95. http://dx.doi.org/10.4018/ijiit.2021040104.
Der volle Inhalt der QuelleThakur, Narina, Sunil K. Singh, Akash Gupta, Kunal Jain, Rachna Jain, Dragan Peraković, Nadia Nedjah und Marjan Kuchaki Rafsanjani. „A Novel CNN, Bidirectional Long-Short Term Memory, and Gated Recurrent Unit-Based Hybrid Approach for Human Activity Recognition“. International Journal of Software Science and Computational Intelligence 14, Nr. 1 (01.01.2022): 1–19. http://dx.doi.org/10.4018/ijssci.311445.
Der volle Inhalt der QuelleGurumoorthy, Sasikumar, Aruna Kumari Kokku, Przemysław Falkowski-Gilski und Parameshachari Bidare Divakarachari. „Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit“. Sustainability 15, Nr. 14 (24.07.2023): 11454. http://dx.doi.org/10.3390/su151411454.
Der volle Inhalt der QuelleLiu, Xinyu, Yongjun Wang, Xishuo Wang, Hui Xu, Chao Li und Xiangjun Xin. „Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system“. Optics Express 29, Nr. 4 (09.02.2021): 5923. http://dx.doi.org/10.1364/oe.416672.
Der volle Inhalt der QuelleEndalie, Demeke, Getamesay Haile und Wondmagegn Taye. „Bi-directional long short term memory-gated recurrent unit model for Amharic next word prediction“. PLOS ONE 17, Nr. 8 (18.08.2022): e0273156. http://dx.doi.org/10.1371/journal.pone.0273156.
Der volle Inhalt der QuelleAbid, Fazeel, Muhammad Alam, Faten S. Alamri und Imran Siddique. „Multi-directional gated recurrent unit and convolutional neural network for load and energy forecasting: A novel hybridization“. AIMS Mathematics 8, Nr. 9 (2023): 19993–20017. http://dx.doi.org/10.3934/math.20231019.
Der volle Inhalt der QuelleSeabe, Phumudzo Lloyd, Claude Rodrigue Bambe Moutsinga und Edson Pindza. „Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach“. Fractal and Fractional 7, Nr. 2 (18.02.2023): 203. http://dx.doi.org/10.3390/fractalfract7020203.
Der volle Inhalt der QuelleDissertationen zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT"
SACHDEVA, NITIN. „CYBERBULLYING DETECTION ON SOCIAL MEDIA USING DEEP LEARNING MODELS“. Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18914.
Der volle Inhalt der QuelleBuchteile zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT"
Jha, Kanchan, Sriparna Saha und Matloob Khushi. „Protein-Protein Interactions Prediction Based on Bi-directional Gated Recurrent Unit and Multimodal Representation“. In Communications in Computer and Information Science, 164–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63823-8_20.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT"
Khan, Saqib Ali, Syed Muhammad Daniyal Khalid, Muhammad Ali Shahzad und Faisal Shafait. „Table Structure Extraction with Bi-Directional Gated Recurrent Unit Networks“. In 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019. http://dx.doi.org/10.1109/icdar.2019.00220.
Der volle Inhalt der QuelleKumar R, Jeen Retna, Berakhah F. Stanley und Joel Devadass D. J. Daniel. „Effective Facial Emotion Recognition Using Bi-wavelet Bi-directional Gated Recurrent Unit Neural Network“. In 2023 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI). IEEE, 2023. http://dx.doi.org/10.1109/raeeucci57140.2023.10134292.
Der volle Inhalt der QuelleSu, Bo-Hao, Chun-Min Chang, Yun-Shao Lin und Chi-Chun Lee. „Improving Speech Emotion Recognition Using Graph Attentive Bi-Directional Gated Recurrent Unit Network“. In Interspeech 2020. ISCA: ISCA, 2020. http://dx.doi.org/10.21437/interspeech.2020-1733.
Der volle Inhalt der QuelleJabreel, Mohammed, und Antonio Moreno. „Target-dependent Sentiment Analysis of Tweets using a Bi-directional Gated Recurrent Unit“. In 13th International Conference on Web Information Systems and Technologies. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006299900800087.
Der volle Inhalt der QuelleWickramaratne, Sajila D., und MD Shaad Mahmud. „Bi-Directional Gated Recurrent Unit Based Ensemble Model for the Early Detection of Sepsis“. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9175223.
Der volle Inhalt der QuelleAim-Nang, Sawetsit, Pusadee Seresangtakul und Pongsathon Janyoi. „Isarn Dialect Word Segmentation using Bi-directional Gated Recurrent Unit with transfer learning approach“. In 2022 26th International Computer Science and Engineering Conference (ICSEC). IEEE, 2022. http://dx.doi.org/10.1109/icsec56337.2022.10049346.
Der volle Inhalt der QuelleWang, Shunjiang, Dianyang Li, Gang Liu, Zhaowei Ling und Duo Wang. „Short-term PV Power Prediction Based on Bi-directional Gated Recurrent Unit Network and Adaptive Chirp Mode Decomposition“. In 2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE). IEEE, 2023. http://dx.doi.org/10.1109/nnice58320.2023.10105683.
Der volle Inhalt der Quelle