Zeitschriftenartikel zum Thema „BI-DIRECTIONAL GRATED RECURRENT UNIT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "BI-DIRECTIONAL GRATED RECURRENT UNIT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Han, Tian, Zhu Zhang, Mingyuan Ren, Changchun Dong, Xiaolin Jiang und Quansheng Zhuang. „Speech Emotion Recognition Based on Deep Residual Shrinkage Network“. Electronics 12, Nr. 11 (02.06.2023): 2512. http://dx.doi.org/10.3390/electronics12112512.
Der volle Inhalt der QuelleAkalya, Devi C., Renuka D. Karthika, T. Harisudhan, V. K. Jeevanantham, J. Jhanani und Varshini S. Kavi. „Text emotion recognition using fast text word embedding in bi-directional gated recurrent unit“. i-manager's Journal on Information Technology 11, Nr. 4 (2022): 1. http://dx.doi.org/10.26634/jit.11.4.19119.
Der volle Inhalt der QuelleZhang, Xue, Helmut Kuehnelt und Wim De Roeck. „Traffic Noise Prediction Applying Multivariate Bi-Directional Recurrent Neural Network“. Applied Sciences 11, Nr. 6 (18.03.2021): 2714. http://dx.doi.org/10.3390/app11062714.
Der volle Inhalt der QuelleAppati, Justice Kwame, Ismail Wafaa Denwar, Ebenezer Owusu und Michael Agbo Tettey Soli. „Construction of an Ensemble Scheme for Stock Price Prediction Using Deep Learning Techniques“. International Journal of Intelligent Information Technologies 17, Nr. 2 (April 2021): 72–95. http://dx.doi.org/10.4018/ijiit.2021040104.
Der volle Inhalt der QuelleThakur, Narina, Sunil K. Singh, Akash Gupta, Kunal Jain, Rachna Jain, Dragan Peraković, Nadia Nedjah und Marjan Kuchaki Rafsanjani. „A Novel CNN, Bidirectional Long-Short Term Memory, and Gated Recurrent Unit-Based Hybrid Approach for Human Activity Recognition“. International Journal of Software Science and Computational Intelligence 14, Nr. 1 (01.01.2022): 1–19. http://dx.doi.org/10.4018/ijssci.311445.
Der volle Inhalt der QuelleGurumoorthy, Sasikumar, Aruna Kumari Kokku, Przemysław Falkowski-Gilski und Parameshachari Bidare Divakarachari. „Effective Air Quality Prediction Using Reinforced Swarm Optimization and Bi-Directional Gated Recurrent Unit“. Sustainability 15, Nr. 14 (24.07.2023): 11454. http://dx.doi.org/10.3390/su151411454.
Der volle Inhalt der QuelleLiu, Xinyu, Yongjun Wang, Xishuo Wang, Hui Xu, Chao Li und Xiangjun Xin. „Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system“. Optics Express 29, Nr. 4 (09.02.2021): 5923. http://dx.doi.org/10.1364/oe.416672.
Der volle Inhalt der QuelleEndalie, Demeke, Getamesay Haile und Wondmagegn Taye. „Bi-directional long short term memory-gated recurrent unit model for Amharic next word prediction“. PLOS ONE 17, Nr. 8 (18.08.2022): e0273156. http://dx.doi.org/10.1371/journal.pone.0273156.
Der volle Inhalt der QuelleAbid, Fazeel, Muhammad Alam, Faten S. Alamri und Imran Siddique. „Multi-directional gated recurrent unit and convolutional neural network for load and energy forecasting: A novel hybridization“. AIMS Mathematics 8, Nr. 9 (2023): 19993–20017. http://dx.doi.org/10.3934/math.20231019.
Der volle Inhalt der QuelleSeabe, Phumudzo Lloyd, Claude Rodrigue Bambe Moutsinga und Edson Pindza. „Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach“. Fractal and Fractional 7, Nr. 2 (18.02.2023): 203. http://dx.doi.org/10.3390/fractalfract7020203.
Der volle Inhalt der QuelleZheng, Zhijie, Liang Feng, Xuan Wang, Rui Liu, Xian Wang und Yi Sun. „Multi-energy load forecasting model based on bi-directional gated recurrent unit multi-task neural network“. E3S Web of Conferences 256 (2021): 02032. http://dx.doi.org/10.1051/e3sconf/202125602032.
Der volle Inhalt der QuelleKhan, Shakir, Ashraf Kamal, Mohd Fazil, Mohammed Ali Alshara, Vineet Kumar Sejwal, Reemiah Muneer Alotaibi, Abdul Rauf Baig und Salihah Alqahtani. „HCovBi-Caps: Hate Speech Detection Using Convolutional and Bi-Directional Gated Recurrent Unit With Capsule Network“. IEEE Access 10 (2022): 7881–94. http://dx.doi.org/10.1109/access.2022.3143799.
Der volle Inhalt der QuelleFu, Yuexin, Zhuhua Hu, Yaochi Zhao und Mengxing Huang. „A Long-Term Water Quality Prediction Method Based on the Temporal Convolutional Network in Smart Mariculture“. Water 13, Nr. 20 (16.10.2021): 2907. http://dx.doi.org/10.3390/w13202907.
Der volle Inhalt der QuelleA. S, Sujeesha, und Rajeev Rajan. „Transformer-based Automatic Music Mood Classification Using Multi-modal Framework“. Journal of Computer Science and Technology 23, Nr. 1 (03.04.2023): e02. http://dx.doi.org/10.24215/16666038.23.e02.
Der volle Inhalt der QuelleWang, Jujie, Yinan Liao, Zhenzhen Zhuang und Dongming Gao. „An Optimal Weighted Combined Model Coupled with Feature Reconstruction and Deep Learning for Multivariate Stock Index Forecasting“. Mathematics 9, Nr. 21 (20.10.2021): 2640. http://dx.doi.org/10.3390/math9212640.
Der volle Inhalt der QuelleChingamtotattil, Rahul, und Rajamma Gopikakumar. „Neural machine translation for Sanskrit to Malayalam using morphology and evolutionary word sense disambiguation“. Indonesian Journal of Electrical Engineering and Computer Science 28, Nr. 3 (07.10.2022): 1709. http://dx.doi.org/10.11591/ijeecs.v28.i3.pp1709-1719.
Der volle Inhalt der QuelleLi, Han, Zhenxiong Liu, Jixiang Niu, Zhongguo Yang und Sikandar Ali. „Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series“. International Journal of Information Technologies and Systems Approach 16, Nr. 3 (27.06.2023): 1–17. http://dx.doi.org/10.4018/ijitsa.325212.
Der volle Inhalt der QuelleUllah, Hayat, und Arslan Munir. „Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework“. Journal of Imaging 9, Nr. 7 (26.06.2023): 130. http://dx.doi.org/10.3390/jimaging9070130.
Der volle Inhalt der QuelleHe, S., H. Jing und H. Xue. „SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION“. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2022 (30.05.2022): 389–95. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2022-389-2022.
Der volle Inhalt der QuelleXie, Kangmin, Jichun Liu und Youbo Liu. „A Power System Timing Data Recovery Method Based on Improved VMD and Attention Mechanism Bi-Directional CNN-GRU“. Electronics 12, Nr. 7 (28.03.2023): 1590. http://dx.doi.org/10.3390/electronics12071590.
Der volle Inhalt der QuelleRupapara, Vaibhav, Furqan Rustam, Aashir Amaar, Patrick Bernard Washington, Ernesto Lee und Imran Ashraf. „Deepfake tweets classification using stacked Bi-LSTM and words embedding“. PeerJ Computer Science 7 (21.10.2021): e745. http://dx.doi.org/10.7717/peerj-cs.745.
Der volle Inhalt der QuelleWang, Yanting, Dingkun Zheng und Rong Jia. „Fault Diagnosis Method for MMC-HVDC Based on Bi-GRU Neural Network“. Energies 15, Nr. 3 (28.01.2022): 994. http://dx.doi.org/10.3390/en15030994.
Der volle Inhalt der QuelleAmit Pimpalkar und Jeberson Retna Raj. „A Bi-Directional GRU Architecture for the Self-Attention Mechanism: An Adaptable, Multi-Layered Approach with Blend of Word Embedding“. International Journal of Engineering and Technology Innovation 13, Nr. 3 (04.07.2023): 251–64. http://dx.doi.org/10.46604/ijeti.2023.11510.
Der volle Inhalt der QuelleZeng, Yajing, Siyu Yang, Xiongkai Yu, Wenting Lin, Wei Wang, Jijun Tong und Shudong Xia. „A multimodal parallel method for left ventricular dysfunction identification based on phonocardiogram and electrocardiogram signals synchronous analysis“. Mathematical Biosciences and Engineering 19, Nr. 9 (2022): 9612–35. http://dx.doi.org/10.3934/mbe.2022447.
Der volle Inhalt der QuelleWang, Qian, Qingguo Yao, Yuli Li, Yansong Zhang und Cuicui Xu. „PLAP: CSI-Based Passive Localization with Amplitude and Phase Information Using CNN and BGRU“. Mobile Information Systems 2023 (03.05.2023): 1–15. http://dx.doi.org/10.1155/2023/1684490.
Der volle Inhalt der QuelleXie, Zaimi, Zhenhua Li, Chunmei Mo und Ji Wang. „A PCA–EEMD–CNN–Attention–GRU–Encoder–Decoder Accurate Prediction Model for Key Parameters of Seawater Quality in Zhanjiang Bay“. Materials 15, Nr. 15 (27.07.2022): 5200. http://dx.doi.org/10.3390/ma15155200.
Der volle Inhalt der QuelleZhang, Bohan, Katsutoshi Hirayama, Hongxiang Ren, Delong Wang und Haijiang Li. „Ship Anomalous Behavior Detection Using Clustering and Deep Recurrent Neural Network“. Journal of Marine Science and Engineering 11, Nr. 4 (31.03.2023): 763. http://dx.doi.org/10.3390/jmse11040763.
Der volle Inhalt der QuelleYadav, Harshwardhan, Param Shah, Neel Gandhi, Tarjni Vyas, Anuja Nair, Shivani Desai, Lata Gohil et al. „CNN and Bidirectional GRU-Based Heartbeat Sound Classification Architecture for Elderly People“. Mathematics 11, Nr. 6 (10.03.2023): 1365. http://dx.doi.org/10.3390/math11061365.
Der volle Inhalt der QuelleSo, Dayeong, Jinyeong Oh, Insu Jeon, Jihoon Moon, Miyoung Lee und Seungmin Rho. „BiGTA-Net: A Hybrid Deep Learning-Based Electrical Energy Forecasting Model for Building Energy Management Systems“. Systems 11, Nr. 9 (02.09.2023): 456. http://dx.doi.org/10.3390/systems11090456.
Der volle Inhalt der QuelleZhou, Yong, Lingyu Wang und Junhao Qian. „Application of Combined Models Based on Empirical Mode Decomposition, Deep Learning, and Autoregressive Integrated Moving Average Model for Short-Term Heating Load Predictions“. Sustainability 14, Nr. 12 (15.06.2022): 7349. http://dx.doi.org/10.3390/su14127349.
Der volle Inhalt der QuelleWang, Qianyang, Yuan Liu, Qimeng Yue, Yuexin Zheng, Xiaolei Yao und Jingshan Yu. „Impact of Input Filtering and Architecture Selection Strategies on GRU Runoff Forecasting: A Case Study in the Wei River Basin, Shaanxi, China“. Water 12, Nr. 12 (16.12.2020): 3532. http://dx.doi.org/10.3390/w12123532.
Der volle Inhalt der QuelleZhang, Pengjv, und Yuanyao Lu. „Research on Anomaly Detection of Surveillance Video Based on Branch-Fusion Net and CSAM“. Sensors 23, Nr. 3 (26.01.2023): 1385. http://dx.doi.org/10.3390/s23031385.
Der volle Inhalt der QuelleAlam, Muhammad S., AKM B. Hossain und Farhan B. Mohamed. „Performance Evaluation of Recurrent Neural Networks Applied to Indoor Camera Localization“. International Journal of Emerging Technology and Advanced Engineering 12, Nr. 8 (02.08.2022): 116–24. http://dx.doi.org/10.46338/ijetae0822_15.
Der volle Inhalt der QuelleTang, Xuliang, Heng Wan, Weiwen Wang, Mengxu Gu, Linfeng Wang und Linfeng Gan. „Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model“. Sustainability 15, Nr. 7 (06.04.2023): 6261. http://dx.doi.org/10.3390/su15076261.
Der volle Inhalt der QuelleTariq, Muhammad Usman, Shuhaida Binti Ismail, Muhammad Babar und Ashir Ahmad. „Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting“. PLOS ONE 18, Nr. 7 (20.07.2023): e0287755. http://dx.doi.org/10.1371/journal.pone.0287755.
Der volle Inhalt der QuelleGuo, Tiantian, Jianzhuo Yan, Jianhui Chen und Yongchuan Yu. „Overflow Capacity Prediction of Pumping Station Based on Data Drive“. Water 15, Nr. 13 (28.06.2023): 2380. http://dx.doi.org/10.3390/w15132380.
Der volle Inhalt der QuelleHe, Ping, Huaying Qi, Shiyi Wang und Jiayue Cang. „Cross-Modal Sentiment Analysis of Text and Video Based on Bi-GRU Cyclic Network and Correlation Enhancement“. Applied Sciences 13, Nr. 13 (25.06.2023): 7489. http://dx.doi.org/10.3390/app13137489.
Der volle Inhalt der QuelleKareem, Kola Yusuff, Yeonjeong Seong, Kyungtak Kim und Younghun Jung. „A Case Study of Tidal Analysis Using Theory-Based Artificial Intelligence Techniques for Disaster Management in Taehwa River, South Korea“. Water 14, Nr. 14 (09.07.2022): 2172. http://dx.doi.org/10.3390/w14142172.
Der volle Inhalt der QuelleWang, Xiaomin, Haoriqin Wang, Guocheng Zhao, Zhichao Liu und Huarui Wu. „ALBERT over Match-LSTM Network for Intelligent Questions Classification in Chinese“. Agronomy 11, Nr. 8 (30.07.2021): 1530. http://dx.doi.org/10.3390/agronomy11081530.
Der volle Inhalt der QuelleZhang, Jingren, Fang’ai Liu, Weizhi Xu und Hui Yu. „Feature Fusion Text Classification Model Combining CNN and BiGRU with Multi-Attention Mechanism“. Future Internet 11, Nr. 11 (12.11.2019): 237. http://dx.doi.org/10.3390/fi11110237.
Der volle Inhalt der QuelleJeon, Sanghun, Ahmed Elsharkawy und Mun Sang Kim. „Lipreading Architecture Based on Multiple Convolutional Neural Networks for Sentence-Level Visual Speech Recognition“. Sensors 22, Nr. 1 (23.12.2021): 72. http://dx.doi.org/10.3390/s22010072.
Der volle Inhalt der QuelleHa, Manh-Hung, The-Anh Pham, Dao Thi Thanh und Van Luan Tran. „Attention correlated appearance and motion feature followed temporal learning for activity recognition“. International Journal of Electrical and Computer Engineering (IJECE) 13, Nr. 2 (01.04.2023): 1510. http://dx.doi.org/10.11591/ijece.v13i2.pp1510-1521.
Der volle Inhalt der QuelleZeng, Shi, und Dechang Pi. „Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning“. Sensors 23, Nr. 10 (22.05.2023): 4969. http://dx.doi.org/10.3390/s23104969.
Der volle Inhalt der QuelleLiang, Jianqin, Daichao Li, Yiting Lin, Sheng Wu und Zongcai Huang. „Named Entity Recognition of Chinese Crop Diseases and Pests Based on RoBERTa-wwm with Adversarial Training“. Agronomy 13, Nr. 3 (22.03.2023): 941. http://dx.doi.org/10.3390/agronomy13030941.
Der volle Inhalt der QuelleZhang, Yujie, Lei Zhang, Duo Sun, Kai Jin und Yu Gu. „Short-Term Wind Power Forecasting Based on VMD and a Hybrid SSA-TCN-BiGRU Network“. Applied Sciences 13, Nr. 17 (31.08.2023): 9888. http://dx.doi.org/10.3390/app13179888.
Der volle Inhalt der QuelleZheng, Chunjun, Chunli Wang und Ning Jia. „An Ensemble Model for Multi-Level Speech Emotion Recognition“. Applied Sciences 10, Nr. 1 (26.12.2019): 205. http://dx.doi.org/10.3390/app10010205.
Der volle Inhalt der QuelleLu, Yiwei, Ruopeng Yang, Xuping Jiang, Dan Zhou, Changsheng Yin und Zizhuo Li. „MRE: A Military Relation Extraction Model Based on BiGRU and Multi-Head Attention“. Symmetry 13, Nr. 9 (19.09.2021): 1742. http://dx.doi.org/10.3390/sym13091742.
Der volle Inhalt der QuellePathan, Refat Khan, Mohammad Amaz Uddin, Ananda Mohan Paul, Md Imtiaz Uddin, Zuhal Y. Hamd, Hanan Aljuaid und Mayeen Uddin Khandaker. „Monkeypox genome mutation analysis using a timeseries model based on long short-term memory“. PLOS ONE 18, Nr. 8 (23.08.2023): e0290045. http://dx.doi.org/10.1371/journal.pone.0290045.
Der volle Inhalt der QuelleASIAGWU, Harriet, UGHERUGHE, Joseph Ediri und EZEABASILI, N. Vincent. „DISAGGREGATED ANALYSIS OF PUBLIC EXPENDITURE AND ECONOMIC DEVELOPMENT ON THE NIGERIAN ECONOMY“. International Journal of Management & Entrepreneurship Research 5, Nr. 1 (23.01.2023): 41–56. http://dx.doi.org/10.51594/ijmer.v5i1.435.
Der volle Inhalt der QuelleShi, Chenbo, Yanhong Cheng, Chun Zhang, Jin Yuan, Yuxin Wang, Xin Jiang und Changsheng Zhu. „Wavelet Scattering Convolution Network-Based Detection Algorithm on Nondestructive Microcrack Electrical Signals of Eggs“. Agriculture 13, Nr. 3 (22.03.2023): 730. http://dx.doi.org/10.3390/agriculture13030730.
Der volle Inhalt der Quelle