Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bio-modelling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bio-modelling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bio-modelling"
Davia, Miguel, Antonio Jimeno-Morenilla und Faustino Salas. „Footwear bio-modelling: An industrial approach“. Computer-Aided Design 45, Nr. 12 (Dezember 2013): 1575–90. http://dx.doi.org/10.1016/j.cad.2013.08.006.
Der volle Inhalt der QuelleCiocchetta, Federica, und Maria Luisa Guerriero. „Modelling Biological Compartments in Bio-PEPA“. Electronic Notes in Theoretical Computer Science 227 (Januar 2009): 77–95. http://dx.doi.org/10.1016/j.entcs.2008.12.105.
Der volle Inhalt der QuelleWodołażski, Artur, und Adam Smoliński. „Bio-Hydrogen Production in Packed Bed Continuous Plug Flow Reactor—CFD-Multiphase Modelling“. Processes 10, Nr. 10 (20.09.2022): 1907. http://dx.doi.org/10.3390/pr10101907.
Der volle Inhalt der QuelleUrama, K. C., C. F. Dilks, S. M. Dunn und R. C. Ferrier. „Socio-economic and bio-physical modelling of diffuse pollution: closing the gaps“. River Systems 17, Nr. 1-2 (28.07.2006): 175–99. http://dx.doi.org/10.1127/lr/17/2006/175.
Der volle Inhalt der QuelleOgundele, O. S., B. K. Alese und O. O. Mathew. „A Bio-Inspired Concept for Information Security Modelling“. International Journal of Green Computing 1, Nr. 1 (Januar 2010): 53–67. http://dx.doi.org/10.4018/jgc.2010010106.
Der volle Inhalt der QuelleNasir, Arooj, Dumitru Baleanu, Ali Raza, Pervez Anwar, Nauman Ahmed, Muhammad Rafiq und Tahir Nawaz Cheema. „Bio-Inspired Modelling of Disease Through Delayed Strategies“. Computers, Materials & Continua 73, Nr. 3 (2022): 5717–34. http://dx.doi.org/10.32604/cmc.2022.031879.
Der volle Inhalt der QuelleKabbej, Marouane, Valérie Guillard, Hélène Angellier-Coussy, Caroline Wolf, Nathalie Gontard und Sébastien Gaucel. „3D Modelling of Mass Transfer into Bio-Composite“. Polymers 13, Nr. 14 (09.07.2021): 2257. http://dx.doi.org/10.3390/polym13142257.
Der volle Inhalt der QuelleLawrance, Ani, Mani Veera Santhoshi Gollapalli, S. Savithri, Ajit Haridas und A. Arunagiri. „Modelling and simulation of food waste bio-drying“. Chemosphere 294 (Mai 2022): 133711. http://dx.doi.org/10.1016/j.chemosphere.2022.133711.
Der volle Inhalt der QuelleKumar, Y. Ravi. „Bio-Modelling Using Rapid Prototyping by Fused Deposition“. Advanced Materials Research 488-489 (März 2012): 1021–25. http://dx.doi.org/10.4028/www.scientific.net/amr.488-489.1021.
Der volle Inhalt der QuelleDemongeot, Jacques, Florence Thuderoz, Thierry Pascal Baum, François Berger und Olivier Cohen. „Bio-array images processing and genetic networks modelling“. Comptes Rendus Biologies 326, Nr. 5 (Mai 2003): 487–500. http://dx.doi.org/10.1016/s1631-0691(03)00114-8.
Der volle Inhalt der QuelleDissertationen zum Thema "Bio-modelling"
Cousin, Thibault. „Synthesis and molecular modelling of bio-based polyamides“. Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00952848.
Der volle Inhalt der QuelleMoscardo, Marco <1989>. „Modelling trophic network with PEPA and Bio-PEPA“. Master's Degree Thesis, Università Ca' Foscari Venezia, 2015. http://hdl.handle.net/10579/5973.
Der volle Inhalt der QuelleDennison, Catherine Lindsay. „Modelling and monitoring of a Herhof bio-degradation system“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0007/MQ33218.pdf.
Der volle Inhalt der QuelleBermudez, Contreras Edgar. „Modelling active bio-inspired object recognition in autonomous mobile agents“. Thesis, University of Sussex, 2010. http://sro.sussex.ac.uk/id/eprint/2364/.
Der volle Inhalt der QuelleGrimaud, Christel. „Logical modelling of reasoning and learning : a bio-inspired approach“. Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30026/document.
Der volle Inhalt der QuelleIn this dissertation, we take inspiration in cognitive sciences to address the issue of the logical modelling of reasoning and learning. Our main thrust is that to address these issues one should take inspiration in the way natural agents (i.e., humans and animals) actually proceed when they draw inferences and learn. Considering that reasoning incorporates a wide range of cognitive abilities, and that it would thus be unreasonable to hope to model the whole of human’s reasoning all at once, we focus here on a very basic kind of inferences that, we argue, can be considered as the primary core of reasoning in all brained animals. We identify a plausible underlying process for these inferences, first at the mental level of description and then at the neural level, and we develop a family of logical models that allow to simulate it. Then we tackle the issue of providing sets of rules to characterise the inference relations induced by these models. These rules are a by-product of the posited process, and should thus be seen as rules that, according to the model, result from the very functioning of brains. Finally we examine the learning processes attached to the considered inferences, and we show how to they can be modelled within our framework. To conclude we briefly discuss possible further developments of the framework, and in particular we give indications about how the modelling of some other cognitive abilities might be envisioned
Shirinskaya, Anna. „Physical modelling of bio sensors based on Organic Electrochemical Transistors“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX055/document.
Der volle Inhalt der QuelleOrganic Electrochemical Transistors are widely used as transducers for sensors in bioelectronics devices. Although these devices have been extensively studied in the last years, there is a lack of fundamental understanding of their working mechanism, especially concerning the de-doping mechanism.This thesis is dedicated to Organic Electrochemical Transistors modelling. First of all, a numerical steady state model was established. This model allows implementing the Poisson-Boltzmann, Nernst-Planck and Nernst equations to describe the de-doping process in the conductive PEDOT:PSS layer, and ions and holes distribution in the device. Two numerical models were proposed. In the first, Local Neutrality model, the assumption of electrolyte ions trapping in PEDOT:PSS layer was taken into consideration, thus the local neutrality was preserved. In the second model the ions were allowed to move freely under applied electric field inside conductive polymer layer, thus only global electroneutrality was kept. It was experimentally proven that the Global Neutrality numerical model is valid to explain the global physics of the device, the origin and the result of the de-doping process. The transition from totally numerical model to analytical model was performed by fitting the parametric analytical Boltzmann logistic function to numerically calculated conductivity profiles. As a result, an analytical equation for the Drain current dependence on applied voltage was derived. By fitting this equation to experimentally measured Drain current- applied voltage profiles, we could obtain the maximum conductivity of a fully doped PEDOT:PSS layer. The maximum conductivity is shown to be dependent not only on the material, but also on device channel size. Using the maximum conductivity value together with the Conventional Semiconductor model it is possible to extract the other parameters for the full description of the OECT: intrinsic charge carrier density, initial holes density, initial PSS- concentration and conductive polymer layer volumetric capacitance. Having a tool to make easy parameters extraction and characterization of any OECT, permits not only to increase the level of device description, but most importantly to highlight the correlation between external and internal device parameters.Finally it is shown how to make the whole description of the real OECT device, all the models were validated by fitting the modeled and experimentally measured data profiles.As a result, not only the purely theoretical model was presented in this thesis to describe the device physics, but also the prominent step was made on simple real device characterization
Smith, David Everett. „Modelling and controlling a bio-inspired flapping-wing micro aerial vehicle“. Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43577.
Der volle Inhalt der QuelleWall, Julie. „Post-cochlear auditory modelling for sound localisation using bio-inspired techniques“. Thesis, Ulster University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525140.
Der volle Inhalt der QuelleRamraj, Anitha. „Computational modelling of intermolecular interactions in bio, organic and nano molecules“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/computational-modelling-of-intermolecular-interactions-in-bio-organic-and-nano-molecules(7a41f3cd-1847-4ccf-8853-5fd8be2a2c15).html.
Der volle Inhalt der QuelleBuoso, Stefano. „High-fidelity modelling and feedback control of bio-inspired membrane wings“. Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/32832.
Der volle Inhalt der QuelleBücher zum Thema "Bio-modelling"
Basualdo, Marta S., Rachid Outbib und Diego Feroldi. PEM fuel cells with bio-fuel processor systems: A multidisciplinar study of modelling, simulation, fault diagnosis and advanced control. London: Springer, 2010.
Den vollen Inhalt der Quelle findenJ, Naidoo Kevin, und Royal Society of Chemistry (Great Britain), Hrsg. Modelling molecular structure and reactivity in biological systems. Cambridge: Royal Society of Chemistry, 2006.
Den vollen Inhalt der Quelle findenClimate under cover: Digital dynamic simulation in plant bio-engineering. Dordrecht: Kluwer Academic Publishers, 1993.
Den vollen Inhalt der Quelle findenHuman Modelling for Bio-Inspired Robotics. Elsevier, 2017. http://dx.doi.org/10.1016/c2014-0-02964-4.
Der volle Inhalt der QuelleMishra, Deepak R., Igor Ogashawara und Anatoly Abraham Gitelson. Bio-Optical Modelling and Remote Sensing of Inland Waters. Elsevier Science & Technology Books, 2017.
Den vollen Inhalt der Quelle findenUeda, Jun, und Yuichi Kurita. Human Modelling for Bio-Inspired Robotics: Mechanical Engineering in Assistive Technologies. Elsevier Science & Technology Books, 2016.
Den vollen Inhalt der Quelle findenBoon, Mieke. Theoretical and experimental methods in the modelling of bio-oxidation kinetics of sulphide Minerals. Mieke Boon, 1996.
Den vollen Inhalt der Quelle findenBasualdo, Marta S., Rachid Outbib und Diego Feroldi. PEM Fuel Cells with Bio-Ethanol Processor Systems: A Multidisciplinary Study of Modelling, Simulation, Fault Diagnosis and Advanced Control. Springer, 2013.
Den vollen Inhalt der Quelle findenASME. Print Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems Volume 2: Modelling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting. American Society of Mechanical Engineers, The, 2016.
Den vollen Inhalt der Quelle findenTakakura, Tadashi. Climate Under Cover: Digital Dynamic Simulation in Plant Bio-Engineering. Springer, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bio-modelling"
Chhatre, Sunil. „Modelling Approaches for Bio-Manufacturing Operations“. In Advances in Biochemical Engineering/Biotechnology, 85–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/10_2012_170.
Der volle Inhalt der QuelleTang, Dunbing, Lei Wang, Wenbin Gu, Weidong Yuan und Dingshan Tang. „Modelling of Bio-inspired Manufacturing System“. In Advances in Intelligent and Soft Computing, 1165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10430-5_89.
Der volle Inhalt der QuelleGheorghe, Marian, Ioanna Stamatopoulou, Mike Holcombe und Petros Kefalas. „Modelling Dynamically Organised Colonies of Bio-entities“. In Lecture Notes in Computer Science, 207–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527800_17.
Der volle Inhalt der QuelleMassink, Mieke, Diego Latella, Andrea Bracciali und Jane Hillston. „Modelling Non-linear Crowd Dynamics in Bio-PEPA“. In Fundamental Approaches to Software Engineering, 96–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19811-3_8.
Der volle Inhalt der QuelleFass, Didier, und Franck Gechter. „Towards a Theory for Bio $$-$$ - Cyber Physical Systems Modelling“. In Digital Human Modeling. Applications in Health, Safety, Ergonomics and Risk Management: Human Modeling, 245–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21073-5_25.
Der volle Inhalt der QuelleWarby, Michael K., und John R. Whiteman. „Modelling of Thermoforming Processes for Bio-Degradable Thermoplastic Materials“. In UK Success Stories in Industrial Mathematics, 205–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25454-8_26.
Der volle Inhalt der QuellePatra, Asesh, Meet Patel, Priyabrata Chattopadhyay, Anubhab Majumder und Sanjoy Kumar Ghoshal. „A Bio-inspired Climbing Robot: Dynamic Modelling and Prototype Development“. In Lecture Notes in Mechanical Engineering, 191–209. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1071-7_17.
Der volle Inhalt der QuelleSivagnanamani, G. S., P. Ramesh, Mohit Hemanth Kumar und V. Arul Mozhi Selvan. „Fracture Analysis of Fused Deposition Modelling of Bio-composite Filaments“. In Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites, 71–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0642-7_4.
Der volle Inhalt der QuelleMavelli, Fabio, Emiliano Altamura und Pasquale Stano. „Giant Vesicles as Compartmentalized Bio-reactors: A 3D Modelling Approach“. In Communications in Computer and Information Science, 184–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32695-5_17.
Der volle Inhalt der QuelleLi, Cai, Robert Lowe und Tom Ziemke. „Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture“. In From Animals to Animats 12, 156–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33093-3_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bio-modelling"
Massey, Roslyn, Rana Amache, Siziwe Bebe und Ravi Prakash. „A Comprehensive Modelling Approach for Bio-EDLC systems“. In 2020 IEEE SENSORS. IEEE, 2020. http://dx.doi.org/10.1109/sensors47125.2020.9278742.
Der volle Inhalt der Quelle„Modelling volatility spillovers for bio-ethanol, sugarcane and corn“. In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.e3.chang.
Der volle Inhalt der QuelleTietz, U., C. C. Berndt und K. P. Schmitz. „Microstructural Modelling and Performance Simulation of Engineered Bio-Composites“. In ITSC2010, herausgegeben von B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0516.
Der volle Inhalt der QuelleVasiliadou, Ioanna A., Dimitris V. Vayenas, Constantinos V. Chrysikopoulos, Theodore E. Simos, George Psihoyios, Ch Tsitouras und Zacharias Anastassi. „Mathematical Modelling of Bacterial Populations in Bio-remediation Processes“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637898.
Der volle Inhalt der QuelleKeskin, Ali Umit, und Feride Sermin Utku. „Rheological Modelling of Bio-fluids Using Moving Coil Transducers“. In The 2nd World Congress on Electrical Engineering and Computer Systems and Science. Avestia Publishing, 2016. http://dx.doi.org/10.11159/icbes16.132.
Der volle Inhalt der QuelleLisnichenko, Marina, und Stanislav Protasov. „BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION“. In Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Der volle Inhalt der QuelleMao, Xiaomin, und Haizhu Hu. „Modelling Bio-Enhanced TCE DNAPL Elimination in a Soil Column“. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516966.
Der volle Inhalt der QuelleDonzella, V., S. Talebi Fard und L. Chrostowski. „Modelling of asymmetric slot racetracks for improved bio-sensors performance“. In 2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2013. http://dx.doi.org/10.1109/nusod.2013.6633106.
Der volle Inhalt der QuelleMorales, Manuel E., und Stephane Lhuillery. „Modelling Circularity in Bio-based Economy Through Territorial System Dynamics“. In 2021 IEEE European Technology and Engineering Management Summit (E-TEMS). IEEE, 2021. http://dx.doi.org/10.1109/e-tems51171.2021.9524890.
Der volle Inhalt der QuelleYe und Choy. „Modelling of the Pulmonary Circulation via Electrical Bio-Impedance Technique“. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.590117.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bio-modelling"
Rural NEET Youth Policy Brief - Youth and Mobility in EU Rural Areas. COST Action 18213: Rural NEET Youth Network: Modeling the risks underlying rural NEETs social exclusion, Mai 2022. http://dx.doi.org/10.15847/cisrnyn.neetpbym.2022.05.
Der volle Inhalt der QuelleAfrican Open Science Platform Part 1: Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Der volle Inhalt der Quelle