Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Bioaccumulatie“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Bioaccumulatie" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Bioaccumulatie"
Toledo-Hernández, Erubiel, Amairani Santana-Flores, Alejandro Sánchez-Ayala, Yanet Romero-Ramírez, Santo Ángel Ortega-Acosta und Jeiry Toribio-Jiménez. „Aislamiento e identificación de bacterias tolerantes y bioacumuladoras de metales pesados, obtenidas de los jales mineros El Fraile, México“. REVISTA TERRA LATINOAMERICANA 38, Nr. 1 (31.01.2020): 67. http://dx.doi.org/10.28940/terra.v38i1.430.
Der volle Inhalt der QuelleHolder, Philippa J., Ainsley Jones, Charles R. Tyler und James E. Cresswell. „Fipronil pesticide as a suspect in historical mass mortalities of honey bees“. Proceedings of the National Academy of Sciences 115, Nr. 51 (03.12.2018): 13033–38. http://dx.doi.org/10.1073/pnas.1804934115.
Der volle Inhalt der QuelleUmeo, Suzana Harue, Maria Graciela Iecher Faria, Simone Schenkel Scheid Vilande, Douglas Cardoso Dragunski, Juliana Silveira do Valle, Nelson Barros Colauto und Giani Andrea Linde. „Iron and zinc mycelial bioaccumulation in Agaricus subrufescens strains“. Semina: Ciências Agrárias 40, Nr. 6 (29.08.2019): 2513. http://dx.doi.org/10.5433/1679-0359.2019v40n6p2513.
Der volle Inhalt der QuelleMareri, B., E. Kitur und P. Obade. „Bioaccumulation of zinc, lead, cadmium in water hyacinth, hippo grass and papyrus reed as water quality indicator in River Kisat in Kisumu County, Kenya“. African Journal of Pure and Applied Sciences 2, Nr. 2 (30.06.2021): 100–107. http://dx.doi.org/10.33886/ajpas.v2i2.213.
Der volle Inhalt der QuelleTalaber, Iva, Cornelis A. M. Van Gestel, Anita Jemec Kokalj, Gregor Marolt, Sara Novak, Primož Zidar und Damjana Drobne. „Comparative biokinetics of pristine and sulfidized Ag nanoparticles in two arthropod species exposed to different field soils“. Environmental Science: Nano 7, Nr. 9 (2020): 2735–46. http://dx.doi.org/10.1039/d0en00291g.
Der volle Inhalt der QuelleReemtsma, T., und N. Klinkow. „A strategy for the assessment of hazardous substances in industrial effluents (IDA)“. Water Science and Technology 50, Nr. 5 (01.09.2004): 59–66. http://dx.doi.org/10.2166/wst.2004.0309.
Der volle Inhalt der QuelleBurtnyk, Michael D., Gordon Paterson, Kenneth G. Drouillard und G. Douglas Haffner. „Steady and non-steady state kinetics describe polychlorinated biphenyl bioaccumulation in natural populations of bluegill (Lepomis macrochirus) and cisco (Coregonus artedi)“. Canadian Journal of Fisheries and Aquatic Sciences 66, Nr. 12 (Dezember 2009): 2189–98. http://dx.doi.org/10.1139/f09-150.
Der volle Inhalt der QuellePilaquinga, Fernanda, Sofía Cárdenas, Doris Vela, Eliza Jara, Jeroni Morey, José Luis Gutiérrez-Coronado, Alexis Debut und María de las Nieves Piña. „Fertility and Iron Bioaccumulation in Drosophila melanogaster Fed with Magnetite Nanoparticles Using a Validated Method“. Molecules 26, Nr. 9 (10.05.2021): 2808. http://dx.doi.org/10.3390/molecules26092808.
Der volle Inhalt der QuelleDouketis, James, Deborah Cook, Nicole Zytaruks, Diane Heels-Ansdell und Mark Crowther. „Dalteparin Thromboprophylaxis in Critically Ill Patients with Severe Renal Insufficiency: The Direct Study.“ Blood 110, Nr. 11 (16.11.2007): 304. http://dx.doi.org/10.1182/blood.v110.11.304.304.
Der volle Inhalt der QuelleAkhter, Kulsoom, Tahseen Ghous, Zain Ul-Abdin, Saiqa Andleeb, Muhammad Naeem Ahmed und Basharat Hussain. „Chromium bioaccumulation potential of Bacillus cereus isolated from rhizospheres of Tagetes minuta L.“ Bangladesh Journal of Botany 49, Nr. 1 (31.03.2020): 47–54. http://dx.doi.org/10.3329/bjb.v49i1.49091.
Der volle Inhalt der QuelleDissertationen zum Thema "Bioaccumulatie"
Yu, Shuo. „Bioaccumulation of Metals in Earthworms“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1259697144.
Der volle Inhalt der QuelleAl-Ansari, Ahmed. „Bioaccumulation of 17α-Ethinylestradiol in Fish“. Thesis, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22684.
Der volle Inhalt der QuelleHEGE, SYLVIA. „Bioaccumulation de metaux chez des champignons macromycetes“. Strasbourg 1, 1989. http://www.theses.fr/1989STR15019.
Der volle Inhalt der QuelleKuhn, Sabine Plocher. „Bioaccumulation of metals using immobilized Zoogloea ramigera /“. The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu148759497065045.
Der volle Inhalt der QuelleStrady, Emilie. „Mécanismes biogéochimiques de la contamination des huîtres Crassostrea gigas en Cadmium en baie de Marennes Oléron“. Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14060/document.
Der volle Inhalt der QuelleThe Marennes-Oléron Bay, hosting the largest oyster production in France, is influenced by thehistoric polymetallic pollution of the Gironde Estuary, with cadmium levels in oysters close tothe consumption limit level (5 μg.g-1 dw, EC No.466/2001). The aim of this pluridisciplinarywork was to characterize the behaviour of trace metals in the coastal zone and the mechanisms ofCd contamination in oysters in the Marennes Oléron Bay. Seven oceanographic cruises wereconducted during contrasting season to characterize trace metals behaviour and speciation in theGironde and Charente estuaries and the coastal zone. Then, a spatial and temporal study of tracemetals in the surface sediments of the Marennes-Oléron Bay showed punctual Cd-enrichedsediments in the southern part, reflecting the connexion with the Gironde waters and theparticulate Cd inputs via the Maumusson inlet. Thus, this area was chosen to study Cdbioaccumulation in oysters over a three months transplantation. The regional hydrodynamic,observed by satellite images, played an important role on Cd speciation and the temporalvariability of dissolved and particulate Cd concentrations. Cadmium bioaccumulation in organsof oysters reared on tables at 60 cm height was more important than in oysters reared near thesediment, suggesting the absence of Cd released during tidal suspension from sediment andmicrophytobenthos. Furthermore, as the immersion time was closed between the two rearingconditions, we suggested Cd bioaccumulation via the direct pathway and also via trophicpathway of contamination by pelagic plankton ingestion. This trophic pathway of Cdcontamination was validated during laboratory experiments using a simultaneous tracing of Cddirect and trophic pathways in oysters by stable isotope spikes at concencentrations 10-foldhigher than the Gironde Estuary and at realistic concentrations observed in the Marennes-OléronBay
Farmer, Troy Mason DeVries Dennis R. Wright Russell A. „Mercury bioaccumulation patterns in two estuarine sportfish populations“. Auburn, Ala, 2008. http://hdl.handle.net/10415/1459.
Der volle Inhalt der QuelleRodrigues, Sandra. „Mercury bioaccumulation in the Egyptian mongoose (Herpestes ichneumon)“. Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/10685.
Der volle Inhalt der QuelleO sacarrabos (Herpestes ichneumon) é um predador que desempenha um papel essencial na cadeia alimentar terrestre. A sua introdução e rápida proliferação pelo território português levaram à necessidade da sua caça como controlo de predadores. Estudos em espécies predadoras terrestres ainda são escassos, pelo que o presente trabalho representa uma mais-valia para um melhor entendimento da acumulação de contaminantes em níveis tróficos superiores. Existem vários contaminantes que representam uma constante preocupação para o ambiente; entre eles, o mercúrio tem tido uma atenção acrescida devido à sua persistência e toxicidade. Estudos no meio terrestre são importantes para um melhor entendimento da forma como se acumula neste meio, para a preservação da vida selvagem mas também para prevenir a exposição humana ao mercúrio. Este estudo teve como principal objectivo avaliar os padrões de acumulação de mercúrio nos tecidos do H. ichneumon, tendo em atenção factores como o género e a idade. H. ichneumon de localizações diferentes foram analisados de forma a avaliar a variação geográfica dos níveis de mercúrio em território Português. Músculo, fígado, pulmão, coração, baço, rins, sangue, cérebro, gordura e pêlo de 29 indivíduos provenientes de 14 localizações foram analisados (Évora, Soure, Ferreira do Zêzere, Castelo Branco, Mértola, Torres Novas, Tondela, Lousã, Coimbra, Montemor-o-Novo, Castro Daire, Olhão, Moura e Coruche). Além disso, de forma a estudar diferenças entre machos e fêmeas ao longo do ciclo de vida da espécie, 25 indivíduos provenientes de Serpa foram analisados. Os níveis de mercúrio nos diferentes órgãos variaram entre 0.01 e 12.7 μg g-1 peso seco, e seguiram geralmente a seguinte ordem, do menos para o mais contaminado: Gordura
The Egyptian mongoose (Herpestes ichneumon), a terrestrial predatory species, has an essential role in the terrestrial food chain. Their introduction in Portugal and rapid proliferation throughout Portuguese territory led to the necessity of their hunt as predator control measure. Studies in terrestrial predatory species are sparse; thereby, the present study is an asset for a better understanding of contaminants accumulation in higher trophic levels. Many contaminants are of environmental concern; mercury has had increased attention due to its persistence and toxicity. Studies have been mostly directed to aquatic wildlife due to the fact that fish consumption is considered to be the principal route of human exposure to mercury. However, terrestrial wildlife studies are also important for a better understanding of mercury accumulation, wildlife preservation and also for preventing human exposure to mercury. The main purpose of this study was to evaluate the different tissue accumulation in H. ichneumon, as well as differences between males and females, throughout the lifespan of the species. H. ichneumons from different locations were also analyzed in order to compare levels throughout Portuguese territory. Muscle, liver, lungs, heart, spleen, kidneys, blood, brain, fat and pelage were analyzed for 29 H. ichneumon from 14 locations (Évora, Soure, Ferreira do Zêzere, Castelo Branco, Mértola, Torres Novas, Tondela, Lousã, Coimbra, Montemor-o-Novo, Castro Daire, Olhão, Moura and Coruche). In order to study differences between ages, males and females, 25 individuals from Serpa were analyzed. Total mercury concentrations in H. ichneumon tissue samples ranged between 0.01 to 12.7 μg g-1 dw, and followed the order, from least to most contaminated: Fat
Rodrigues, Andreia do Carmo Martins. „Mercury toxicity and bioaccumulation: lab & field studies“. Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/7457.
Der volle Inhalt der QuelleThis work aims to evaluate the toxicity, bioaccumulation and biomagnification of mercury and it is divided into a laboratory and a field component. The laboratory component was divided into two parts and the field component was conducted into an estuarine environment in Ria de Aveiro, Portugal. In the laboratory we started by evaluating the toxicity of mercury for different aquatic organisms, using mercury concentrations that ranged between 0.5 μg/L to 2.4 mg/L. The chosen species used in this assay to evaluate mercury toxicity were the models: Pseudokirchneriella subcapitata, Daphnia magna and Chironomus riparius and the autochthonous species: Chlorella vulgaris, Lemna minor and Daphnia longispina. Mercury showed to be toxic to all testes species, with EC50 values ranging from 7.3 μg Hg/L (immobilization test of D. longispina) to 1.58 mg Hg/L (immobilization test of the larvae of C. riparius). The assay showed that even low doses of mercury can cause significant effects at the levels of primary producers, the base of the trophic chain. In the secondary laboratorial assay, an aquatic trophic chain was simulated using the primary producer P. subcapitata, the primary consumer D. magna and the secondary consumer Danio rerio. The trophic chain mercury contamination process was initiated exposing an algae culture to inorganic mercury (10 μg Hg/L), resulting in the accumulation of 70% of the available mercury in the primary producer. The contaminated algae were then used as food supply to the specie D. magna and subsequently D. magna specimens were used as food to the secondary consumer. After 14 days of exposure D. magna accumulates 0.14 μg Hg/g, whereas the final average concentration obtained in the muscle of the fish D. rerio after 21 days was 0.27 μg Hg/g (wet weight). All test species accumulate mercury along the time of exposure; the higher biomagnification occurred from the microalgae P. subcapitata to the mircrocrustacean D. magna, enhancing the crucial role of primary producers in the bioconcentration of mercury from the water column along the trophic chain. Fieldwork was conducted in the Ria de Aveiro, in two specific sites (Cais do Bico and Barra) that were already characterized regarding dissimilar environmental mercury contamination levels. Mercury levels were evaluated in the water column (total mercury), sediments (total and organic mercury) and in juvenile fish Liza aurata inhabiting the area (total and organic mercury). Cais do Bico site, located near the source of contamination showed the highest values of total mercury: 68 ng/L in the water column, 0.19 μg/g in the sediments and 0.07 μg/g in fish. The site distant from the source of mercury (Barra) presented a great amount of organic mercury in the sediments (0.02 μg/g) and a higher percentage of organic mercury in fish muscle (96%). The study indicates that, although mercury discharges have already stopped in the end of the last century, mercury stored in sediments continues to be ressuspended to the water column, becoming bioavailable to biota. The adoption of juvenile specimens provides information on short-term variations of mercury concentrations in the environment.
O objectivo deste trabalho é avaliar a toxicidade, a bioacumulação e a bioamplificação de mercúrio. O trabalho apresenta uma componente laboratorial e uma componente de campo. A componente laboratorial foi dividida em duas partes e a componente de campo foi realizada num ambiente estuarino, Ria de Aveiro, Portugal. Na componente laboratorial, começou por se avaliar a toxicidade do mercúrio para diferentes organismos aquáticos, testando-se concentrações de mercúrio entre 0,5 μg/L e 2,4 mg/L. As espécies teste escolhidas para avaliar a toxicidade do mercúrio incluíram espécies modelo: Pseudokirchneriella subcapitata, Daphnia magna e Chironomus riparius, e espécies autóctones: Chlorella vulgaris, Lemna minor e Daphnia longispina. O mercúrio revelou ser tóxico para todas as espécies, obtendo-se valores de EC50 que variaram de 7.3 μg Hg/L (teste de imobilização de D. longispina) a 1,58 mg Hg/L (teste de imobilização das larvas de C. riparius). Este ensaio demonstrou que pequenas doses de mercúrio provocam efeitos consideráveis ao nível dos produtores primários, base das cadeias tróficas. Num segundo procedimento experimental construiu-se uma cadeia trófica aquática, constituída pelo produtor primário P. subcapitata, pelo consumidor primário D. magna e o consumidor secundário Danio rerio. A contaminação iniciou-se pelo meio de cultura das algas com 10 μg Hg/L, do qual estas acumularam 70% do mercúrio disponível. Esta espécie foi usada como alimento para D. magna, que por sua vez, foi usada como alimento para o consumidor secundário Danio rerio. Após um período de 14 dias de teste D. magna acumulou 0,14 μg Hg/g. A concentração média obtida no músculo de D. rerio, após 21 dias de teste, foi de 0,27 μg Hg/g, peso fresco. Todos os organismos acumularam mercúrio ao longo do tempo de exposição, sendo que a maior bioamplificação de mercúrio ocorreu da microalga P. subcapitata para o microcrustáceo D. magna, reforçando assim o papel crucial dos produtores primários na bioconcentração de mercúrio da coluna de água para as cadeias tróficas. O trabalho de campo foi realizado na Ria de Aveiro, em dois sítios específicos, cuja caracterização em termos de contaminação por mercúrio já estava descrita. Estudou-se a carga de mercúrio total na coluna de água, bem como o mercúrio total e orgânico nos sedimentos e a sua transferência e acumulação para peixes juvenis residentes na área, Liza aurata. O Cais do Bico, local mais próximo da fonte de contaminação apresentou os maiores valores de mercúrio total: 68 ng/L na coluna de água, 0,19 μg/g nos sedimentos e 0,07 μg/g nos peixes. O local mais distante da fonte de mercúrio, Barra, apresentou uma maior quantidade de mercúrio orgânico nos sedimentos (0,02 μg/g) e uma percentagem de mercúrio orgânico no músculo dos peixes igualmente superior, de 96%. Esta monitorização comprovou que, embora as descargas industriais de mercúrio já tenham sido interrompidas no final do século passado, o mercúrio armazenado nos sedimentos continua a ser ressuspendido para a coluna de água, ficando biodisponível para a biota. A utilização de organismos juvenis fornece informações sobre as variações a curto prazo das concentrações de mercúrio no ambiente.
Naigaga, Irene. „Bioaccumulation and histopathology of copper in Oreochromis mossambicus“. Thesis, Rhodes University, 2003. http://hdl.handle.net/10962/d1005077.
Der volle Inhalt der QuelleGiansiracusa, Sara. „Bioaccumulation of legacy and emerging contaminants in tuna species“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18305/.
Der volle Inhalt der QuelleBücher zum Thema "Bioaccumulatie"
(Netherlands), Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling. Biologische monitoring zoete rijkswateren: Bioaccumulatie in aal en driehoeksmosselen : een evaluatie van 10 jaar monitoren (1992-2002). Lelystad]: Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat, RIZA, Rijksinstituut voor Integraal Zoetwaterbeheer en Afvalwaterbehandeling, 2003.
Den vollen Inhalt der Quelle findenConnell, D. W. Bioaccumulation of xenobiotic compounds. Boca Raton, Fla: CRC Press, 1990.
Den vollen Inhalt der Quelle findenLipnick, Robert L., Joop L. M. Hermens, Kevin C. Jones und Derek C. G. Muir, Hrsg. Persistent, Bioaccumulative, and Toxic Chemicals I. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2001-0772.
Der volle Inhalt der QuelleLipnick, Robert L., Bo Jansson, Donald Mackay und Myrto Petreas, Hrsg. Persistent, Bioaccumulative, and Toxic Chemicals II. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2001-0773.
Der volle Inhalt der Quelleinc, Tetra Tech. Bioaccumulation monitoring guidance: Final report. Bellevue, Wash: Tetra Tech, Inc., 1985.
Den vollen Inhalt der Quelle findenBeek, B., Hrsg. Bioaccumulation – New Aspects and Developments. Berlin/Heidelberg: Springer-Verlag, 2000. http://dx.doi.org/10.1007/10503050.
Der volle Inhalt der QuelleChojnacka, Katarzyna. Biosorption and bioaccumulation in practice. New York: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenGuthrie, Donald R. Bioaccumulation from Amax/Kitsault of tailings. Ottawa, Ont: Environment Canada, Environmental Protection Service, 1985.
Den vollen Inhalt der Quelle findenHung, Hayley Hing Ning. The bioaccumulation of organic chemicals in vegetation. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenEmerson, Rose. Persistent bioaccumulative toxin-free purchasing resolution: An internship report. Bellingham, WA: Huxley College of the Environment, Western Washington University, 2007.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Bioaccumulatie"
da Costa, Monica Ferreira, Helena do Amaral Kehrig und Isabel Maria Neto da Silva Moreira. „Bioaccumulation“. In Encyclopedia of Estuaries, 74–75. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-8801-4_132.
Der volle Inhalt der QuelleMance, Geoffrey. „Bioaccumulation“. In Pollution Threat of Heavy Metals in Aquatic Environments, 287–98. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3421-4_9.
Der volle Inhalt der QuelleNewman, Michael C. „Factors Influencing Bioaccumulation“. In Fundamentals of Ecotoxicology, 127–55. Fifth edition. | Boca Raton : CRC Press, 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351133999-4.
Der volle Inhalt der QuelleWeis, Judith S. „Bioaccumulation/Storage/Detoxification“. In Physiological, Developmental and Behavioral Effects of Marine Pollution, 355–92. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6949-6_10.
Der volle Inhalt der QuelleRodriguez, Pilar, und Trefor B. Reynoldson. „Bioaccumulation and Trophic Transfer“. In The Pollution Biology of Aquatic Oligochaetes, 159–99. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1718-3_5.
Der volle Inhalt der QuellePatil, Ganapati P., Sharad D. Gore und Charles Taillie*. „Composite Sampling and Bioaccumulation“. In Composite Sampling, 239–42. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7628-4_14.
Der volle Inhalt der QuelleBarron, Mace G., und Kent B. Woodburn. „Pesticide Bioaccumulation and Metabolism“. In Xenobiotics in Fish, 39–54. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4703-7_4.
Der volle Inhalt der QuelleBienfang, Paul K., Henry Trapido-Rosenthal und Edward A. Laws. „Bioaccumulation bioaccumulation /Biomagnifications marine ecosystem biomagnification in Food Chains food chain“. In Encyclopedia of Sustainability Science and Technology, 822–45. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_50.
Der volle Inhalt der QuelleSijm, D. T. H. M. „The 'B' in PBT: Bioaccumulation“. In ACS Symposium Series, 13–26. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2001-0772.ch002.
Der volle Inhalt der QuelleStreit, Bruno. „Bioaccumulation of contaminants in fish“. In Fish Ecotoxicology, 353–87. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8853-0_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Bioaccumulatie"
Tarita, Anatolie, und Valeriu Brasoveanu. „Bioacumularea metalelor grele în lemnul speciilor de arbori din ecosistemul forestier „Padurea Hânceşti”“. In Impactul antropic asupra calitatii mediului. Institute of Ecology and Geography, Republic of Moldova, 2019. http://dx.doi.org/10.53380/9789975330800.11.
Der volle Inhalt der QuelleZheng, Jiang, und Yahui Gao. „A Novel Method to Bioaccumulate Calcium in Spirulina“. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162222.
Der volle Inhalt der QuelleBrankovic, Snezana, Radmila Glisic, Duško Brkovic, Gorica Đelic, Zoran Simic, Vera Rajicic, Ranko Saric und Milun Jovanovic. „SADRŽAJ METALA U ZEMLJIŠTU I ODABRANIM BILJKAMA NA JALOVIŠTU FLOTACIJE RUDNIK DOO „RUDNIK"“. In XXVI savetovanje o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.501b.
Der volle Inhalt der QuelleMoigradean, Diana. „HEAVY METALS BIOACCUMULATION RATE IN TOMATO FRUIT“. In 14th SGEM GeoConference on ECOLOGY, ECONOMICS, EDUCATION AND LEGISLATION. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b52/s20.045.
Der volle Inhalt der QuelleZhang, Yanxu. „Bioaccumulation of Methylmercury in a Marine Plankton Ecosystem“. In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.3140.
Der volle Inhalt der QuelleJOHNS, N., J. KURTZMAN, Z. SHTASEL-GOTTLIEB, S. RAUCH und D. I. WALLACE. „THE BIOACCUMULATION OF METHYLMERCURY IN AN AQUATIC ECOSYSTEM“. In BIOMAT 2010 - International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343435_0017.
Der volle Inhalt der QuelleWalker, Rachel A., und Chad R. Hammerschmidt. „MERCURY BIOACCUMULATION IN SPOTTED SALAMANDERS IN SOUTHWEST OHIO“. In Joint 52nd Northeastern Annual Section and 51st North-Central Annual GSA Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017ne-291035.
Der volle Inhalt der QuelleLaughlin, R. „Bioaccumulation of Tributyltin: The Link Between Environment and Organism“. In OCEANS '86. IEEE, 1986. http://dx.doi.org/10.1109/oceans.1986.1160346.
Der volle Inhalt der QuelleDilek, Sophie, Siphokazi Kargbo, Jessica Morgan, Marc Anderson, Robert M. Newton und Robert B. Merritt. „BIOACCUMULATION OF MERCURY IN LARGEMOUTH BASS FROM NORTHWESTERN MISSOURI“. In 51st Annual Northeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016ne-272327.
Der volle Inhalt der QuelleKucherenko, S. V. „XENOBIOTICS ATTACK! WHAT TO DO?“ In STATE AND DEVELOPMENT PROSPECTS OF AGRIBUSINESS. DSTU-PRINT, 2020. http://dx.doi.org/10.23947/interagro.2020.1.178-180.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Bioaccumulatie"
Bridges, Todd S., und Charles H. Lutz. Interpreting Bioaccumulation Data with the Environmental Residue-Effects Database. Fort Belvoir, VA: Defense Technical Information Center, Januar 1999. http://dx.doi.org/10.21236/ada362932.
Der volle Inhalt der QuelleFarrar, J. D., Guilherme Lotufo und Jerre Sims. Development of a Bioaccumulation Test Method with the Amphipod Leptocheirus plumulosus. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada540712.
Der volle Inhalt der QuelleFisher, Nicholas S. Bioaccumulation and Trophic Transfer of Long-Lived Radionuclides in Arctic Plankton. Fort Belvoir, VA: Defense Technical Information Center, Januar 1996. http://dx.doi.org/10.21236/ada337290.
Der volle Inhalt der QuelleSteevens, Jeffery A., und Peter F. Landrum. DREDGING RESEARCH: Assessing Significance of Contaminant Bioaccumulation: A Biological-Effects-Based Approach. Fort Belvoir, VA: Defense Technical Information Center, März 2002. http://dx.doi.org/10.21236/ada402267.
Der volle Inhalt der QuelleYoung, J. S. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel. Office of Scientific and Technical Information (OSTI), Juli 1986. http://dx.doi.org/10.2172/5528993.
Der volle Inhalt der QuelleMcFarland, Victor A., Joan U. Clarke und Robert M. Engler. Analysis of Uncertainty in TBP Estimation of PAH Bioaccumulation Potential in Sediments. Fort Belvoir, VA: Defense Technical Information Center, Juni 1999. http://dx.doi.org/10.21236/ada367678.
Der volle Inhalt der QuelleGustavson, Karl. Verifying Food Web Bioaccumulation Models by Tracking Fish Exposure and Contaminant Uptake. Fort Belvoir, VA: Defense Technical Information Center, März 2012. http://dx.doi.org/10.21236/ada568618.
Der volle Inhalt der QuelleAdams, Marshall, Craig C. Brandt und Allison M. Fortner. Bioaccumulation Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010. Office of Scientific and Technical Information (OSTI), Mai 2012. http://dx.doi.org/10.2172/1045859.
Der volle Inhalt der QuelleBenemann, J. R., und E. W. Wilde. Literature review on the use of bioaccumulation for heavy metal removal and recovery. Office of Scientific and Technical Information (OSTI), Februar 1991. http://dx.doi.org/10.2172/5787800.
Der volle Inhalt der QuelleLarson, Steven L., John H. Ballard, Fende Meng, Decheng Jin, Kai Guo, Liangmei Chen, Zikri Arslan et al. Influences of U sources and forms on its bioaccumulation in Indian mustard and sunflower. Engineer Research and Development Center (U.S.), Juni 2020. http://dx.doi.org/10.21079/11681/37275.
Der volle Inhalt der Quelle