Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Biopolymers characterisation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Biopolymers characterisation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Biopolymers characterisation"
John, Maya Jacob, Nokuzola Dyanti, Teboho Mokhena, Victor Agbakoba und Bruce Sithole. „Design and Development of Cellulosic Bionanocomposites from Forestry Waste Residues for 3D Printing Applications“. Materials 14, Nr. 13 (22.06.2021): 3462. http://dx.doi.org/10.3390/ma14133462.
Der volle Inhalt der QuelleOyekanmi, Adeleke A., N. I. Saharudin, Che Mohamad Hazwan, Abdul Khalil H. P. S., Niyi G. Olaiya, Che K. Abdullah, Tata Alfatah, Deepu A. Gopakumar und Daniel Pasquini. „Improved Hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF Using Silane Coupling Agent“. Molecules 26, Nr. 8 (13.04.2021): 2254. http://dx.doi.org/10.3390/molecules26082254.
Der volle Inhalt der QuelleGauthier, Emilie, Diane Ouwerkerk, Bronwyn Laycock und Mary Fletcher. „Biopolymer Composites for Slow Release to Manage Pimelea Poisoning in Cattle“. Proceedings 36, Nr. 1 (13.02.2020): 97. http://dx.doi.org/10.3390/proceedings2019036097.
Der volle Inhalt der QuelleJamiluddin, J., J. P. Siregar, C. Tezara, M. H. M. Hamdan und S. M. Sapuan. „Characterisation of cassava biopolymers and the determination of their optimum processing temperatures“. Plastics, Rubber and Composites 47, Nr. 10 (20.10.2018): 447–57. http://dx.doi.org/10.1080/14658011.2018.1534390.
Der volle Inhalt der QuelleAng, Teik-Hun, Kunlanan Kiatkittipong, Worapon Kiatkittipong, Siong-Chin Chua, Jun Wei Lim, Pau-Loke Show, Mohammed J. K. Bashir und Yeek-Chia Ho. „Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting“. Water 12, Nr. 5 (14.05.2020): 1388. http://dx.doi.org/10.3390/w12051388.
Der volle Inhalt der QuelleGallego, Marta, Milagros Arnal, Pau Talens, Fidel Toldrá und Leticia Mora. „Effect of Gelatin Coating Enriched with Antioxidant Tomato By-Products on the Quality of Pork Meat“. Polymers 12, Nr. 5 (02.05.2020): 1032. http://dx.doi.org/10.3390/polym12051032.
Der volle Inhalt der QuelleWongkaew, Malaiporn, Pikulthong Chaimongkol, Noppol Leksawasdi, Kittisak Jantanasakulwong, Pornchai Rachtanapun, Phisit Seesuriyachan, Yuthana Phimolsiripol et al. „Mango Peel Pectin: Recovery, Functionality and Sustainable Uses“. Polymers 13, Nr. 22 (11.11.2021): 3898. http://dx.doi.org/10.3390/polym13223898.
Der volle Inhalt der QuelleKus, B., Jaya Kandasamy, S. Vigneswaran und H. K. Shon. „Water quality characterisation of rainwater in tanks at different times and locations“. Water Science and Technology 61, Nr. 2 (01.01.2010): 429–39. http://dx.doi.org/10.2166/wst.2010.824.
Der volle Inhalt der QuelleSabina, L., B. Kus, H. K. Shon und J. Kandasamy. „Membrane fouling propensity after adsorption as pretreatment in rainwater: a detailed organic characterisation“. Water Science and Technology 58, Nr. 8 (01.10.2008): 1535–39. http://dx.doi.org/10.2166/wst.2008.522.
Der volle Inhalt der QuelleHerranz, Beatriz, Wenceslao Canet, María José Jiménez, Raúl Fuentes und María Dolores Alvarez. „Characterisation of chickpea flour-based gluten-free batters and muffins with added biopolymers: rheological, physical and sensory properties“. International Journal of Food Science & Technology 51, Nr. 5 (06.03.2016): 1087–98. http://dx.doi.org/10.1111/ijfs.13092.
Der volle Inhalt der QuelleDissertationen zum Thema "Biopolymers characterisation"
Eissa-Mohamed, Ahmed Mohamed. „Synthesis and characterisation of novel biopolymers via click chemistry“. Thesis, Durham University, 2011. http://etheses.dur.ac.uk/581/.
Der volle Inhalt der QuelleGrech, David. „Development of a Quasi-concertina MEMS sensor for the characterisation of biopolymers“. Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/375079/.
Der volle Inhalt der QuelleRapp, Telana. „Isolation and characterisation of genes encoding biopolymer manufacturing enzymes“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/19968.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Biopolymers exhibit the required material properties to replace conventional, non-biodegradable, petroleum-based polymer products. They have a closed carbon cycle, making them carbon neutral and environmentally friendly. Biopolymers are produced from non-toxic substrates during in vivo enzymatic reactions. Biosynthesis of the most commercially important biopolymers is too complex to be reproduced in in vitro reactions. Identification of the genes responsible for their biosynthesis has been under investigation, with some pathways already elucidated. The genes involved in the biosynthesis of these polymers have been targeted for genetic manipulation to increase productivity, as well as create tailor-made polymers. Novel biopolymers and the genes responsible for their synthesis are of interest for their potential commercial applications. Bacteria produce a wide range of biopolymers and are being implemented as the bio-factories for biopolymer production. They are capable of utilising easily accessible and renewable carbon sources such as sucrose for polymer biosynthesis. Bacteria thus allow for economical production of these environmentally beneficial polymers. In this study, the gene responsible for the production of an unknown biopolymer from an unknown bacterium was identified. The biopolymer producing bacteria were grown on media enriched with sucrose as carbon source, during an expression library screening in a previous study. Expression library technology was used to search for the gene and it was identified as a 424 amino acid levansucrase which had a 100% homology to Leuconostoc mesenteroides M1FT levansucrase (AAT81165.1). Biopolymer analysis revealed that the biopolymer was a levan, a polysaccharide consisting of only fructose molecules with a molecular weight of ± 5 kDa. Analysis of a 516 bp fragment of the 16S rRNA determined that the unknown bacteria were a Pseudomonas species.
AFRIKAANSE OPSOMMING: Bio-polimere besit noodsaaklike materiële eienskappe wat toelaat dat dit konvensionele, nie bio-afbreekbare, petroleum-gebasseerde polimeer produkte kan vervang. Hulle het n geslote koolstof kringloop en is dus koolstof neutraal en omgewingsvriendelik. Bio-polimere word vervaardig van nie-toksiese substrate, gedurende ensiematiese reaksies in vivo. Die belangrikste kommersiële bio-polimere se ensiematiese produksie is te kompleks om in ʼn in vitro reaksie te herproduseer. Ondersoeke tot die identifikasie van die gene wat verantwoordelik is vir die produksie van die polimere is onderweg, en sommige produksie paaie is reeds bekend. Die bekende gene word geteiken vir genetiese manipulasie om hulle produktiwiteit te vermeerder en om unieke polimere te produseer. Unieke bio-polimere en die gene wat vir hul produksie verantwoordelik is, is van belang vir hulle potentiële implimentering in komersiële toepassings. Bakteria produseer ʼn verskeidenheid bio-polimere en word as die bio-fabrieke vir polimeerproduksie geimplimenteer. Hulle kan maklik bekombare koolstofbronne, soos sukrose, gebruik om bio-polimere te produseer. Bakteria laat dus die ekonomiese produksie van hierdie omgewingsvriendelike polimere toe. In hierdie studie word die geen wat verantwoordelik is vir die produksie van ʼn onbekende bio-polimeer van ʼn onbekende bakteria, geidentifiseer. Die bakteria was gevind op media, wat verryk was met sukrose as koolstofbron, tydens ʼn vorige studie, waartydens ʼn uitdrukkingsbiblioteek gesif was op hierdie media. Uitdrukkingsbiblioteek tegnologie was gebruik om die geen te vind. Die geen was geidentifiseer as ʼn 424 aminosuur, homo-fruktose-polimeer produseerende geen, ʼn “levansucrase”. Die geen het ʼn 100% homologie met die M1FT “levansucrase” geen (AAT81165.1) van Leuconostoc mesenteroides gehad. Analise van die bio-polimeer het bepaal dat die polimeer ʼn polisakkaried was, wat slegs uit fruktose molekules bestaan het. Die molekulêre gewig van die polimeer was ± 5 kDa. Analise van ʼn 516 bp fragment van die 16S rRNS het bepaal dat die bakteria van die Pseudomonas spesie afkomstig was.
Lees, Emma E. „Preparation and characterisation of biocompatible semiconductor nanocrystals“. Connect to thesis, 2009. http://repository.unimelb.edu.au/10187/7084.
Der volle Inhalt der QuelleIn this thesis, studies are described with the aim to prepare robust, biocompatible semiconductor nanocrystals that exhibit each of the properties necessary for their implementation in biological applications. Two different approaches were investigated: ligand exchange and polymer encapsulation, and advances in each are presented. A heterobifunctional ligand suitable for bioconjugation, carboxyl terminated dihydrolipoic acid poly(ethylene glycol) (DHLA-PEG-COOH), was synthesised and characterised to prepare water-soluble, biocompatible semiconductor nanocrystals via ligand exchange. It was found that nanocrystals transferred into water using DHLA-PEG-COOH exhibit the same optical properties and colloidal stability as those prepared using DHLA-PEG. It was demonstrated that the surface charge of the nanocrystals may be controlled by altering the ratio of DHLA-PEG:DHLA-PEG- COOH ligands. In a different approach, colloidally stable, biocompatible nanocrystals were prepared via polymer encapsulation. It was found that by employing a low molecular weight polymer, biocompatible nanocrystals that exhibit a small hydrodynamic diameter could be realised.
Experimental results are presented on the conjugation of biocompatible nanocrystals to protein targets. It was found that while standard coupling chemistries yield protein-dye conjugates, these chemistries did not result in protein-nanocrystal conjugates. In order to overcome the drawbacks of standard coupling chemistries, which are susceptible to hydrolysis, a novel conjugation scheme utilising copper-free click chemistry is proposed.
Finally, the success of nanocrystals in bioapplications depends on the ability to characterise nanocrystal-protein conjugates. By means of analytical ultracentrifugation, data on the sedimentation properties of nanocrystals and nanocrystal-protein conjugates was obtained. Analysis of these data provided information on fundamental physical properties of biocompatible nanocrystals and nanocrystal-protein conjugates, in particular the core crystal size, hydrodynamic size, number of surface ligands and nanocrystal:protein stoichiometry. Such a precise, comprehensive characterisation of nanocrystals in general, and nanocrystal-protein conjugates in particular, will greatly facilitate their use in bioapplications.
Costa, Jessica. „Use and characterisation of free or immobilised enzymatic systems for the synthesis and functionalisation of novel materials“. Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1127196.
Der volle Inhalt der QuellePishbin, Fatemehsadat. „Development and characterisation of bioactive coatings based on biopolymer and bioactive glass obtained by electrochemical means“. Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11591.
Der volle Inhalt der QuelleNinan, Neethu. „Synthesis, characterisation and biological evaluation of tissue engineering scaffolds for wound healing“. Lorient, 2013. http://www.theses.fr/2013LORIS306.
Der volle Inhalt der QuelleL'ingénierie des tissus est une approche thérapeutique prometteuse qui rassemble des cellules, des biomatériaux et des facteurs de l'environnement pour promouvoir la réparation de tissus et la restauration fonctionnelle. Malgré beaucoup de progrès, les chercheurs font toujours face à la difficulté de conception de matériaux pour promouvoir la croissance de cellules cutanées. Les squelettes (scaffolds) sont des objets poreux fabriqués qui servent de matrice extracellulaire pour créer un microenvironnement pour la croissance et la différentiation de cellules de peau et le développement de tissus améliorés. L'utilisation de zéolites a été envisagée pour faciliter la réparation des tissus. De plus, les polymères naturels accomplissent un ensemble divers des fonctions dans leur environnement biologique. Des polymères naturels, biocompatibles, biodégradables et non-toxiques ont été choisis. Cette étude consiste à évaluer le potentiel de tissus hybrides polymères-zéolites pour la guérison de blessures. Nous avons testé les propriétés de différent taux de faujasites incorporés dans l’échafaudage polymère comme la pectine, carboxymethyl cellulose, la gélatine et l'acide hyaluronic par les techniques de lyophilisation et la voie solvant. Les études de structure, de propriétés mécaniques, thermiques et de dégradation ont été réalisées. L'activité antibactérienne, la cytotoxicité et la guérison de blessures effectuées sur des rats ont été discuté en détails
Zhang, Lin. „Isolation and characterisation of biopolymers from anti-cancer medicinal herbs“. Thesis, 2012. http://handle.uws.edu.au:8081/1959.7/564846.
Der volle Inhalt der QuelleHagbjer, Elizabeth. „Characterisation of Solubility and Aggregation of Alkaline Extracted Plant Cell Wall Biopolymers“. Thesis, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59110.
Der volle Inhalt der QuelleValiderat; 20120827 (anonymous); 2017-02-08 Nedladdad 414 gånger t.o.m. september 2016. Downloaded 414 times up until september 2016 (marisr)
Negaresh, Ebrahim Chemical Sciences & Engineering Faculty of Engineering UNSW. „Particle and macromolecular fouling in submerged membrane“. 2007. http://handle.unsw.edu.au/1959.4/40743.
Der volle Inhalt der QuelleBücher zum Thema "Biopolymers characterisation"
Al-Assaf, Saphwan. Characterisation and radiation sensitivity of the biopolymer hylan. Salford: University of Salford, 1994.
Den vollen Inhalt der Quelle findenO'Brien, Paul, James Chapman, Harry Kroto, Fiona Regan und Timothy Sullivan. Nanoparticles in Anti-Microbial Materials: Use and Characterisation. Royal Society of Chemistry, The, 2012.
Den vollen Inhalt der Quelle findenNanoparticles in Anti-Microbial Materials: Use and Characterisation. Royal Society of Chemistry, The, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Biopolymers characterisation"
Rajalakshmi, T. Uma, und G. Alagumuthu. „A Facile Route for the Fabrication of Nanocompositie by Effective Impregnation Through the Biopolymer Matrix and Its Characterisation“. In Proceedings of the International Conference on Nanomedicine (ICON-2019), 153–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25135-2_14.
Der volle Inhalt der QuelleRay Foster, Leslie John. „PEGylation and BioPEGylation of Polyhydroxyalkanoates: Synthesis, Characterisation and Applications“. In Biopolymers. Sciyo, 2010. http://dx.doi.org/10.5772/10265.
Der volle Inhalt der QuelleRichardson, Robert K., und Stefan Kasapis. „Rheological methods in the characterisation of food biopolymers“. In Developments in Food Science, 1–48. Elsevier, 1998. http://dx.doi.org/10.1016/s0167-4501(98)80006-x.
Der volle Inhalt der QuelleRamesh, M. „Polysaccharide-Fibrous Clay Bionanocomposites and their Applications“. In Advanced Applications of Micro and Nano Clay, 1–26. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901915-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Biopolymers characterisation"
Pesce, Cecilia, Giovanni Pesce, Marco Molinari und Alan Richardson. „Customising Microstructural and Mineralogical Characteristics of Hydrated Lime Using Biopolymers“. In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.353.
Der volle Inhalt der Quelle