Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Biosensiing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Biosensiing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Biosensiing"
Kumar, Ravinder, Somvir ., Surender Singh und Kulwant . „A Review on application of Nanoscience for Biosensing“. International Journal of Engineering Research 3, Nr. 4 (01.04.2014): 279–85. http://dx.doi.org/10.17950/ijer/v3s4/423.
Der volle Inhalt der QuelleZhou Xue, 周雪, 闫欣 Yan Xin, 张学楠 Zhang Xuenan, 王方 Wang Fang, 李曙光 Li Shuguang, 郎雷 Lang Lei und 程同蕾 Cheng Tonglei. „软玻璃光纤在生物传感领域应用的研究进展“. Laser & Optoelectronics Progress 58, Nr. 15 (2021): 1516019. http://dx.doi.org/10.3788/lop202158.1516019.
Der volle Inhalt der QuelleP.Sangeetha, P. Sangeetha, und Dr A. Vimala Juliet. „Biosensing by Cantilever Resonator for Disease Causing Pathogen Detection“. Indian Journal of Applied Research 4, Nr. 3 (01.10.2011): 174–75. http://dx.doi.org/10.15373/2249555x/mar2014/51.
Der volle Inhalt der QuelleCurtin, Kathrine, Bethany J. Fike, Brandi Binkley, Toktam Godary und Peng Li. „Recent Advances in Digital Biosensing Technology“. Biosensors 12, Nr. 9 (23.08.2022): 673. http://dx.doi.org/10.3390/bios12090673.
Der volle Inhalt der QuelleWu, Jiyun, und Qiuyao Wu. „The Review of Biosensor and its Application in the Diagnosis of COVID-19“. E3S Web of Conferences 290 (2021): 03028. http://dx.doi.org/10.1051/e3sconf/202129003028.
Der volle Inhalt der QuelleHowell, Noura, John Chuang, Abigail De Kosnik, Greg Niemeyer und Kimiko Ryokai. „Emotional Biosensing“. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (November 2018): 1–25. http://dx.doi.org/10.1145/3274338.
Der volle Inhalt der QuelleMejía-Salazar, J. R., und Osvaldo N. Oliveira. „Plasmonic Biosensing“. Chemical Reviews 118, Nr. 20 (24.09.2018): 10617–25. http://dx.doi.org/10.1021/acs.chemrev.8b00359.
Der volle Inhalt der QuelleFink, Dietmar, Gerardo Munoz Hernandez, Jiri Vacik und Lital Alfonta. „Pulsed Biosensing“. IEEE Sensors Journal 11, Nr. 4 (April 2011): 1084–87. http://dx.doi.org/10.1109/jsen.2010.2073461.
Der volle Inhalt der QuelleBellassai, Noemi, Roberta D’Agata und Giuseppe Spoto. „Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications“. Analytical and Bioanalytical Chemistry 413, Nr. 24 (06.04.2021): 6063–77. http://dx.doi.org/10.1007/s00216-021-03309-4.
Der volle Inhalt der QuelleSoleymani, Leyla, Sudip Saha, Amanda Victorious, Sadman Sakib und Igor Zhitomirsky. „(Invited) Development of New Strategies for Bringing Photoelectrochemical Biosensing to the Point-of-Need“. ECS Meeting Abstracts MA2022-01, Nr. 53 (07.07.2022): 2178. http://dx.doi.org/10.1149/ma2022-01532178mtgabs.
Der volle Inhalt der QuelleDissertationen zum Thema "Biosensiing"
Mickan, Samuel Peter. „T-ray biosensing /“. Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phm6253.pdf.
Der volle Inhalt der QuelleD'Imperio, Luke A. „Biosensing-inspired Nanostructures:“. Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108627.
Der volle Inhalt der QuelleNanoscale biosensing devices improve and enable detection mechanisms by taking advantage of properties inherent to nanoscale structures. This thesis primarily describes the development, characterization and application of two such nanoscale structures. Namely, these two biosensing devices discussed herein are (1) an extended-core coaxial nanogap electrode array, the ‘ECC’ and (2) a plasmonic resonance optical filter array, the ‘plasmonic halo’. For the former project, I discuss the materials and processing considerations that were involved in the making of the ECC device, including the nanoscale fabrication, experimental apparatuses, and the chemical and biological materials involved. I summarize the ECC sensitivity that was superior to those of conventional detection methods and proof-of-concept bio-functionalization of the sensing device. For the latter project, I discuss the path of designing a biosensing device based on the plasmonic properties observed in the plasmonic halo, including the plasmonic structures, materials, fabrication, experimental equipment, and the biological materials and protocols
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Ravindran, Ramasamy. „An electronic biosensing platform“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44774.
Der volle Inhalt der QuelleLai, Ming-Liang. „Developing piezoelectric biosensing methods“. Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6109/.
Der volle Inhalt der QuelleMuñoz, Berbel Xavier. „Microsystems based on microbial biosensing“. Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/3587.
Der volle Inhalt der QuelleSekretaryova, Alina. „Novel reagentless electrodes for biosensing“. Licentiate thesis, Linköpings universitet, Kemiska och optiska sensorsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112345.
Der volle Inhalt der QuelleArchibald, Michelle M. „Novel nanoarchitectures for electrochemical biosensing“. Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106807.
Der volle Inhalt der QuelleSensitive, real-time detection of biomarkers is of critical importance for rapid and accurate diagnosis of disease for point-of-care (POC) technologies. Current methods, while sensitive, do not adequately allow for POC applications due to several limitations, including complex instrumentation, high reagent consumption, and cost. We have investigated two novel nanoarchitectures, the nanocoax and the nanodendrite, as electrochemical biosensors towards the POC detection of infectious disease biomarkers to overcome these limitations. The nanocoax architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. The dendritic structure consists of metallic nanocrystals extending from the working electrode, increasing sensor surface area. Nanocoaxial- and nanodendritic-based electrochemical sensors were fabricated and developed for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). Proof-of-concept was demonstrated for the detection of cholera toxin (CT). Both nanoarchitectures exhibited levels of sensitivity that are comparable to the standard optical ELISA used widely in clinical applications. In addition to matching the detection profile of the standard ELISA, these electrochemical nanosensors provide a simple electrochemical readout and a miniaturized platform with multiplexing capabilities toward POC implementation. Further development as suggested in this thesis may lead to increases in sensitivity, enhancing the attractiveness of the architectures for future POC devices
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Llandro, Justin. „Magnetic rings for digital biosensing“. Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611941.
Der volle Inhalt der QuelleWang, Wenxing. „Development of microcantilever biosensing platforms“. Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2722.
Der volle Inhalt der QuelleTriggs, Graham J. „Resonant grating surfaces for biosensing“. Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/13210/.
Der volle Inhalt der QuelleBücher zum Thema "Biosensiing"
Schultz, Jerome, Milan Mrksich, Sangeeta N. Bhatia, David J. Brady, Antonio J. Ricco, David R. Walt und Charles L. Wilkins. Biosensing. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x.
Der volle Inhalt der QuelleBhattacharya, Enakshi. Biosensing with Silicon. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92714-1.
Der volle Inhalt der QuelleChandra, Pranjal, und Kuldeep Mahato, Hrsg. Miniaturized Biosensing Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9897-2.
Der volle Inhalt der QuelleSchöning, Michael J., und Arshak Poghossian, Hrsg. Label-Free Biosensing. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75220-4.
Der volle Inhalt der QuelleMerkoi, Arben, Hrsg. Biosensing Using Nanomaterials. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470447734.
Der volle Inhalt der QuelleBorse, Vivek, Pranjal Chandra und Rohit Srivastava, Hrsg. BioSensing, Theranostics, and Medical Devices. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-2782-8.
Der volle Inhalt der QuelleChandra, Pranjal, Hrsg. Biosensing and Micro-Nano Devices. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8333-6.
Der volle Inhalt der QuelleRenneberg, Reinhard, und Fred Lisdat, Hrsg. Biosensing for the 21st Century. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75201-1.
Der volle Inhalt der QuelleZhu, Jun-Jie, Jing-Jing Li, Hai-Ping Huang und Fang-Fang Cheng. Quantum Dots for DNA Biosensing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-44910-9.
Der volle Inhalt der QuelleBuchteile zum Thema "Biosensiing"
Schultz, Jerome. „Infrastructure Overview“. In Biosensing, 1–29. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_1.
Der volle Inhalt der QuelleWalt, David R. „Optical Biosensing“. In Biosensing, 31–43. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_2.
Der volle Inhalt der QuelleMrksich, Milan. „Electro-Based Sensors and Surface Engineering“. In Biosensing, 45–53. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_3.
Der volle Inhalt der QuelleBhatia, Sangeeta N. „Cell and Tissue-Based Sensors“. In Biosensing, 55–65. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_4.
Der volle Inhalt der QuelleWilkins, Charles L. „Mass Spectrometry and Biosensing Research“. In Biosensing, 67–78. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_5.
Der volle Inhalt der QuelleRicco, Antonio J. „Microfabricated Biosensing Devices: MEMS, Microfluidics, and Mass Sensors“. In Biosensing, 79–106. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_6.
Der volle Inhalt der QuelleBrady, David J. „Information Systems for Biosensing“. In Biosensing, 107–19. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4058-x_7.
Der volle Inhalt der QuelleKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles et al. „Biosensing“. In Encyclopedia of Nanotechnology, 329. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100084.
Der volle Inhalt der QuelleWolf, Jean-Pierre. „Biosensing Instrumentation“. In NATO Science for Peace and Security Series B: Physics and Biophysics, 131–52. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_4.
Der volle Inhalt der QuelleMaeda, Mizuo. „Biosensing Materials“. In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_230-1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Biosensiing"
Zhang, Bing, Kai Pang, Yi Sun und Xiaoping Wang. „High-peformance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320083.
Der volle Inhalt der QuelleEscobar Acevedo, Marco Antonio, J. R. Guzman-Sepulveda, Carlos G. Martínez-Arias, Miguel Torres-Cisneros und Rafael Guzman-Cabrera. „Biosensing using long-range surface plasmon structures“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320281.
Der volle Inhalt der QuelleRagan, Regina, und William Thrift. „Quantitative single molecule SERS sensing enabled by machine learning (Conference Presentation)“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320297.
Der volle Inhalt der QuelleCojocaru, Ivan, Jing-Wei Fan, Joe Becker, Ilya V. Fedotov, Masfer H. Alkahtani, Abdulrahman Alajlan, Sean Blakley et al. „All-optical high resolution thermometry with color centers in diamond (Conference Presentation)“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320316.
Der volle Inhalt der QuelleChang, An-Yi, und Prabhu Arumugam. „Fabrication and characterization of boron-doped ultrananocrystalline diamond microelectrodes modified with multi-walled carbon nanotubes and nafion“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320417.
Der volle Inhalt der QuelleNishino, Tomoki, Hiroshi Tanigawa und Jun Sekiguchi. „Antifouling technology of metamaterial structure using biomimetic technology“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320471.
Der volle Inhalt der QuelleDubolazov, Olexander V., Mikhailo Sakhnovskiy, M. S. Garazduyk, A. V. Syvokorovskaya, G. B. Bodnar, V. A. Ushenko, O. I. Olar und O. Tsyhykalo. „Correlation structure of Stokes parametric images of polycrystalline films of human biological fluids“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320512.
Der volle Inhalt der QuelleSokolnyk, S. O., M. I. Sidor, Olexander V. Dubolazov, Leonid Pidkamin, Yuriy Ushenko, O. V. Olar, G. B. Bodnar und O. Prydiy. „Clinical applications of the Mueller-matrix reconstruction of the polycrystalline structure of multiple-scattering biological tissues“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320527.
Der volle Inhalt der QuelleUshenko, Alexander, V. G. Zhytaryuk, M. I. Sidor, A. V. Motrich, O. V. Pavliukovich, O. Ya Wulchulyak, I. V. Soltys und N. Pavliukovich. „Diffuse tomography of optical anisotropy of tumors of the uterus wall“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320529.
Der volle Inhalt der QuelleSyvokorovskaya, A. V., M. P. Gorsky, R. Besaga, Yuriy Ushenko, Yuriy Tomka, S. O. Sokolnuik, O. Bakun, L. Yu Kushnerik und S. Golub. „System of 3D Mueller-matrix reconstruction of fibrillar networks of biological tissues of various morphological structure and physiological state“. In Biosensing and Nanomedicine XI, herausgegeben von Hooman Mohseni, Massoud H. Agahi und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2320535.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Biosensiing"
Anderson, G., M. Mauro, H. Mattoussi und R. Banahalli. Luminescent Nanoparticles for High Sensitivity Biosensing. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2000. http://dx.doi.org/10.21236/ada399563.
Der volle Inhalt der QuelleYan, Hao. Self-Assembled Combinatorial Nanoarrays for Multiplex Biosensing. Fort Belvoir, VA: Defense Technical Information Center, Februar 2010. http://dx.doi.org/10.21236/ada518368.
Der volle Inhalt der QuelleMartinez, Jennifer. Genetically encoded functional materials: regenerative medicine, optoelectronics, biosensing. Office of Scientific and Technical Information (OSTI), Februar 2015. http://dx.doi.org/10.2172/1169673.
Der volle Inhalt der QuelleBroach, James, Alexandre Morozov und Ron Weiss. Highly Extensible Programmed Biosensing Circuits with Fast Memory. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2011. http://dx.doi.org/10.21236/ada559064.
Der volle Inhalt der QuelleSlipher, Geoffrey, Randy Mrozek, W. D. Hairston, Joseph Conroy, Wosen Wolde und William Nothwang. Stretchable Conductive Elastomers for Soldier Biosensing Applications: Final Report. Fort Belvoir, VA: Defense Technical Information Center, März 2016. http://dx.doi.org/10.21236/ad1005120.
Der volle Inhalt der QuelleShtenberg, Giorgi, und Shelley Minteer. Dual mode detection of heavy metal pollutants: A real-time biosensing method. United States Department of Agriculture, Januar 2018. http://dx.doi.org/10.32747/2018.7604937.bard.
Der volle Inhalt der QuelleDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada582056.
Der volle Inhalt der QuelleDel Vecchio, Domitilla. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells. Fort Belvoir, VA: Defense Technical Information Center, März 2015. http://dx.doi.org/10.21236/ada616874.
Der volle Inhalt der QuelleStukes, James, Frank Weaver, Bettye Stokes, Nancy O'Connor und Charlie Barans. Marine Science Initiative at South Carolina State College: An Investigation of the Biosensing Parameters Regulating Bacterial and Larval Attachment on Substrata. Fort Belvoir, VA: Defense Technical Information Center, August 1993. http://dx.doi.org/10.21236/ada268910.
Der volle Inhalt der Quelle