Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „BREAKHIS DATASET“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "BREAKHIS DATASET" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "BREAKHIS DATASET"
Joshi, Shubhangi A., Anupkumar M. Bongale, P. Olof Olsson, Siddhaling Urolagin, Deepak Dharrao und Arunkumar Bongale. „Enhanced Pre-Trained Xception Model Transfer Learned for Breast Cancer Detection“. Computation 11, Nr. 3 (13.03.2023): 59. http://dx.doi.org/10.3390/computation11030059.
Der volle Inhalt der QuelleXu, Xuebin, Meijuan An, Jiada Zhang, Wei Liu und Longbin Lu. „A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism“. Computational and Mathematical Methods in Medicine 2022 (14.05.2022): 1–14. http://dx.doi.org/10.1155/2022/8585036.
Der volle Inhalt der QuelleOgundokun, Roseline Oluwaseun, Sanjay Misra, Akinyemi Omololu Akinrotimi und Hasan Ogul. „MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors“. Sensors 23, Nr. 2 (06.01.2023): 656. http://dx.doi.org/10.3390/s23020656.
Der volle Inhalt der QuelleUkwuoma, Chiagoziem C., Md Altab Hossain, Jehoiada K. Jackson, Grace U. Nneji, Happy N. Monday und Zhiguang Qin. „Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head“. Diagnostics 12, Nr. 5 (05.05.2022): 1152. http://dx.doi.org/10.3390/diagnostics12051152.
Der volle Inhalt der QuelleMohanakurup, Vinodkumar, Syam Machinathu Parambil Gangadharan, Pallavi Goel, Devvret Verma, Sameer Alshehri, Ramgopal Kashyap und Baitullah Malakhil. „Breast Cancer Detection on Histopathological Images Using a Composite Dilated Backbone Network“. Computational Intelligence and Neuroscience 2022 (06.07.2022): 1–10. http://dx.doi.org/10.1155/2022/8517706.
Der volle Inhalt der QuelleNahid, Abdullah-Al, Mohamad Ali Mehrabi und Yinan Kong. „Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering“. BioMed Research International 2018 (2018): 1–20. http://dx.doi.org/10.1155/2018/2362108.
Der volle Inhalt der QuelleSun, Yixin, Lei Wu, Peng Chen, Feng Zhang und Lifeng Xu. „Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation“. Electronic Research Archive 31, Nr. 9 (2023): 5340–61. http://dx.doi.org/10.3934/era.2023271.
Der volle Inhalt der QuelleIstighosah, Maie, Andi Sunyoto und Tonny Hidayat. „Breast Cancer Detection in Histopathology Images using ResNet101 Architecture“. sinkron 8, Nr. 4 (01.10.2023): 2138–49. http://dx.doi.org/10.33395/sinkron.v8i4.12948.
Der volle Inhalt der QuelleLi, Lingxiao, Niantao Xie und Sha Yuan. „A Federated Learning Framework for Breast Cancer Histopathological Image Classification“. Electronics 11, Nr. 22 (16.11.2022): 3767. http://dx.doi.org/10.3390/electronics11223767.
Der volle Inhalt der QuelleBurrai, Giovanni P., Andrea Gabrieli, Marta Polinas, Claudio Murgia, Maria Paola Becchere, Pierfranco Demontis und Elisabetta Antuofermo. „Canine Mammary Tumor Histopathological Image Classification via Computer-Aided Pathology: An Available Dataset for Imaging Analysis“. Animals 13, Nr. 9 (06.05.2023): 1563. http://dx.doi.org/10.3390/ani13091563.
Der volle Inhalt der QuelleDissertationen zum Thema "BREAKHIS DATASET"
Zhang, Hang. „Distributed Support Vector Machine With Graphics Processing Units“. ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/991.
Der volle Inhalt der QuelleSAADIZADEH, SAMAN. „SIGNIFICANTLY ACCURATE SYSTEM FOR BREAST CANCER MALIGNANCY OR BENIGN CLASSIFICATION“. Thesis, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19429.
Der volle Inhalt der QuelleBücher zum Thema "BREAKHIS DATASET"
Tan, Yeling. Disaggregating China, Inc. Cornell University Press, 2021. http://dx.doi.org/10.7591/cornell/9781501759635.001.0001.
Der volle Inhalt der QuelleLyall, Jason. Divided Armies. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691192444.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "BREAKHIS DATASET"
Agarwal, Pinky, Anju Yadav und Pratistha Mathur. „Breast Cancer Prediction on BreakHis Dataset Using Deep CNN and Transfer Learning Model“. In Data Engineering for Smart Systems, 77–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2641-8_8.
Der volle Inhalt der QuelleSchirmer, Pascal A., und Iosif Mporas. „Binary versus Multiclass Deep Learning Modelling in Energy Disaggregation“. In Springer Proceedings in Energy, 45–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_6.
Der volle Inhalt der QuelleDellmuth, Lisa. „EU Spending Effects on Regional Well-Being“. In Is Europe Good for You?, 77–98. Policy Press, 2021. http://dx.doi.org/10.1332/policypress/9781529217469.003.0005.
Der volle Inhalt der QuelleThomas, D. J., B. D. Sutton, J. W. Ferguson und E. Price. „Spatially Resolved Detonation Pressure Data From Rate Sticks“. In Future Developments in Explosives and Energetics, 105–19. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781788017855-00105.
Der volle Inhalt der QuelleThomas, D. J., B. D. Sutton, J. W. Ferguson und E. Price. „Spatially Resolved Detonation Pressure Data From Rate Sticks“. In Future Developments in Explosives and Energetics, 105–19. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839162350-00105.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "BREAKHIS DATASET"
MAYOUF, MOUNA SABRINE, und FLORENCE DUPIN DE SAINT-Cyr. „Curriculum Incremental Deep Learning on BreakHis DataSet“. In ICCTA 2022: 2022 8th International Conference on Computer Technology Applications. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3543712.3543747.
Der volle Inhalt der QuelleSantos, Stefane A., Andressa G. Moreira und Ialis C. P. Junior. „Análise comparativa da influência de otimizadores no desempenho de uma CNN para detecção do câncer de mama“. In Escola Regional de Computação Ceará, Maranhão, Piauí. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/ercemapi.2021.17901.
Der volle Inhalt der QuelleFreitas, Mario Pinto, Marcos Gabriel Mendes Lauande, Geraldo Braz Júnior, Marcus Vinicius Oliveira, Gabriel Costa, Matheus Levy, Anselmo Cardoso de Paiva und João D. Sousa de Almeida. „Aplicando MultiInstance Learning (MIL) para o Diagnóstico de Câncer de Mama em Imagens Histopatológicas“. In Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sbcas.2022.222673.
Der volle Inhalt der QuelleSantos, Marta C., Ana I. Borges, Davide R. Carneiro und Flora J. Ferreira. „Synthetic dataset to study breaks in the consumer’s water consumption patterns“. In ICoMS 2021: 2021 4th International Conference on Mathematics and Statistics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3475827.3475836.
Der volle Inhalt der QuellePal, S., C. Iek, L. J. Peltier, A. Smirnov, K. J. Knight, D. Zheng und J. Jarvis. „Verification and Validation of CFD Model to Predict Jet Loads and Blast Wave Pressures From High Pressure Superheated Steam Line Break“. In ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/power2016-59675.
Der volle Inhalt der QuelleLamb, Nikolas, Cameron Palmer, Benjamin Molloy, Sean Banerjee und Natasha Kholgade Banerjee. „Fantastic Breaks: A Dataset of Paired 3D Scans of Real-World Broken Objects and Their Complete Counterparts“. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.00454.
Der volle Inhalt der QuellePazi, Idan, Dvir Ginzburg und Dan Raviv. „Unsupervised Scale-Invariant Multispectral Shape Matching“. In 24th Irish Machine Vision and Image Processing Conference. Irish Pattern Recognition and Classification Society, 2022. http://dx.doi.org/10.56541/vhmq4826.
Der volle Inhalt der QuelleHan, Jiyeon, Kyowoon Lee, Anh Tong und Jaesik Choi. „Confirmatory Bayesian Online Change Point Detection in the Covariance Structure of Gaussian Processes“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/340.
Der volle Inhalt der QuelleTolstaya, E., A. Shakirov und M. Mezghani. „Lithology Prediction from Drill Cutting Images Using Convolutional Neural Networks and Automated Dataset Cleaning“. In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216418-ms.
Der volle Inhalt der QuelleLi, Boyang, Yurong Cheng, Ye Yuan, Guoren Wang und Lei Chen. „Simultaneous Arrival Matching for New Spatial Crowdsourcing Platforms“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/178.
Der volle Inhalt der Quelle