Zeitschriftenartikel zum Thema „BREAKHIS DATASET“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "BREAKHIS DATASET" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Joshi, Shubhangi A., Anupkumar M. Bongale, P. Olof Olsson, Siddhaling Urolagin, Deepak Dharrao und Arunkumar Bongale. „Enhanced Pre-Trained Xception Model Transfer Learned for Breast Cancer Detection“. Computation 11, Nr. 3 (13.03.2023): 59. http://dx.doi.org/10.3390/computation11030059.
Der volle Inhalt der QuelleXu, Xuebin, Meijuan An, Jiada Zhang, Wei Liu und Longbin Lu. „A High-Precision Classification Method of Mammary Cancer Based on Improved DenseNet Driven by an Attention Mechanism“. Computational and Mathematical Methods in Medicine 2022 (14.05.2022): 1–14. http://dx.doi.org/10.1155/2022/8585036.
Der volle Inhalt der QuelleOgundokun, Roseline Oluwaseun, Sanjay Misra, Akinyemi Omololu Akinrotimi und Hasan Ogul. „MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors“. Sensors 23, Nr. 2 (06.01.2023): 656. http://dx.doi.org/10.3390/s23020656.
Der volle Inhalt der QuelleUkwuoma, Chiagoziem C., Md Altab Hossain, Jehoiada K. Jackson, Grace U. Nneji, Happy N. Monday und Zhiguang Qin. „Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head“. Diagnostics 12, Nr. 5 (05.05.2022): 1152. http://dx.doi.org/10.3390/diagnostics12051152.
Der volle Inhalt der QuelleMohanakurup, Vinodkumar, Syam Machinathu Parambil Gangadharan, Pallavi Goel, Devvret Verma, Sameer Alshehri, Ramgopal Kashyap und Baitullah Malakhil. „Breast Cancer Detection on Histopathological Images Using a Composite Dilated Backbone Network“. Computational Intelligence and Neuroscience 2022 (06.07.2022): 1–10. http://dx.doi.org/10.1155/2022/8517706.
Der volle Inhalt der QuelleNahid, Abdullah-Al, Mohamad Ali Mehrabi und Yinan Kong. „Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering“. BioMed Research International 2018 (2018): 1–20. http://dx.doi.org/10.1155/2018/2362108.
Der volle Inhalt der QuelleSun, Yixin, Lei Wu, Peng Chen, Feng Zhang und Lifeng Xu. „Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation“. Electronic Research Archive 31, Nr. 9 (2023): 5340–61. http://dx.doi.org/10.3934/era.2023271.
Der volle Inhalt der QuelleIstighosah, Maie, Andi Sunyoto und Tonny Hidayat. „Breast Cancer Detection in Histopathology Images using ResNet101 Architecture“. sinkron 8, Nr. 4 (01.10.2023): 2138–49. http://dx.doi.org/10.33395/sinkron.v8i4.12948.
Der volle Inhalt der QuelleLi, Lingxiao, Niantao Xie und Sha Yuan. „A Federated Learning Framework for Breast Cancer Histopathological Image Classification“. Electronics 11, Nr. 22 (16.11.2022): 3767. http://dx.doi.org/10.3390/electronics11223767.
Der volle Inhalt der QuelleBurrai, Giovanni P., Andrea Gabrieli, Marta Polinas, Claudio Murgia, Maria Paola Becchere, Pierfranco Demontis und Elisabetta Antuofermo. „Canine Mammary Tumor Histopathological Image Classification via Computer-Aided Pathology: An Available Dataset for Imaging Analysis“. Animals 13, Nr. 9 (06.05.2023): 1563. http://dx.doi.org/10.3390/ani13091563.
Der volle Inhalt der QuelleMinarno, Agus Eko, Lulita Ria Wandani und Yufis Azhar. „Classification of Breast Cancer Based on Histopathological Image Using EfficientNet-B0 on Convolutional Neural Network“. International Journal of Emerging Technology and Advanced Engineering 12, Nr. 8 (02.08.2022): 70–77. http://dx.doi.org/10.46338/ijetae0822_09.
Der volle Inhalt der QuelleAgbley, Bless Lord Y., Jianping Li, Md Altab Hossin, Grace Ugochi Nneji, Jehoiada Jackson, Happy Nkanta Monday und Edidiong Christopher James. „Federated Learning-Based Detection of Invasive Carcinoma of No Special Type with Histopathological Images“. Diagnostics 12, Nr. 7 (09.07.2022): 1669. http://dx.doi.org/10.3390/diagnostics12071669.
Der volle Inhalt der QuelleMewada, Hiren K., Amit V. Patel, Mahmoud Hassaballah, Monagi H. Alkinani und Keyur Mahant. „Spectral–Spatial Features Integrated Convolution Neural Network for Breast Cancer Classification“. Sensors 20, Nr. 17 (22.08.2020): 4747. http://dx.doi.org/10.3390/s20174747.
Der volle Inhalt der QuelleLi, Xin, HongBo Li, WenSheng Cui, ZhaoHui Cai und MeiJuan Jia. „Classification on Digital Pathological Images of Breast Cancer Based on Deep Features of Different Levels“. Mathematical Problems in Engineering 2021 (30.12.2021): 1–13. http://dx.doi.org/10.1155/2021/8403025.
Der volle Inhalt der QuelleAmato, Domenico, Salvatore Calderaro, Giosué Lo Bosco, Riccardo Rizzo und Filippo Vella. „Metric Learning in Histopathological Image Classification: Opening the Black Box“. Sensors 23, Nr. 13 (28.06.2023): 6003. http://dx.doi.org/10.3390/s23136003.
Der volle Inhalt der QuelleLiu, Min, Yu He, Minghu Wu und Chunyan Zeng. „Breast Histopathological Image Classification Method Based on Autoencoder and Siamese Framework“. Information 13, Nr. 3 (24.02.2022): 107. http://dx.doi.org/10.3390/info13030107.
Der volle Inhalt der QuelleUmer, Muhammad Junaid, Muhammad Sharif, Seifedine Kadry und Abdullah Alharbi. „Multi-Class Classification of Breast Cancer Using 6B-Net with Deep Feature Fusion and Selection Method“. Journal of Personalized Medicine 12, Nr. 5 (26.04.2022): 683. http://dx.doi.org/10.3390/jpm12050683.
Der volle Inhalt der QuelleUmer, Muhammad Junaid, Muhammad Sharif, Seifedine Kadry und Abdullah Alharbi. „Multi-Class Classification of Breast Cancer Using 6B-Net with Deep Feature Fusion and Selection Method“. Journal of Personalized Medicine 12, Nr. 5 (26.04.2022): 683. http://dx.doi.org/10.3390/jpm12050683.
Der volle Inhalt der QuelleSarker, Md Mostafa Kamal, Farhan Akram, Mohammad Alsharid, Vivek Kumar Singh, Robail Yasrab und Eyad Elyan. „Efficient Breast Cancer Classification Network with Dual Squeeze and Excitation in Histopathological Images“. Diagnostics 13, Nr. 1 (29.12.2022): 103. http://dx.doi.org/10.3390/diagnostics13010103.
Der volle Inhalt der QuelleChandranegara, Didih Rizki, Faras Haidar Pratama, Sidiq Fajrianur, Moch Rizky Eka Putra und Zamah Sari. „Automated Detection of Breast Cancer Histopathology Image Using Convolutional Neural Network and Transfer Learning“. MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer 22, Nr. 3 (03.07.2023): 455–68. http://dx.doi.org/10.30812/matrik.v22i3.2803.
Der volle Inhalt der QuelleWakili, Musa Adamu, Harisu Abdullahi Shehu, Md Haidar Sharif, Md Haris Uddin Sharif, Abubakar Umar, Huseyin Kusetogullari, Ibrahim Furkan Ince und Sahin Uyaver. „Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning“. Computational Intelligence and Neuroscience 2022 (10.10.2022): 1–31. http://dx.doi.org/10.1155/2022/8904768.
Der volle Inhalt der QuelleAlirezazadeh, Pendar, Fadi Dornaika und Abdelmalik Moujahid. „Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification“. Electronics 12, Nr. 20 (20.10.2023): 4356. http://dx.doi.org/10.3390/electronics12204356.
Der volle Inhalt der QuelleZaalouk, Ahmed M., Gamal A. Ebrahim, Hoda K. Mohamed, Hoda Mamdouh Hassan und Mohamed M. A. Zaalouk. „A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer“. Bioengineering 9, Nr. 8 (15.08.2022): 391. http://dx.doi.org/10.3390/bioengineering9080391.
Der volle Inhalt der QuelleLi, Jia, Jingwen Shi, Hexing Su und Le Gao. „Breast Cancer Histopathological Image Recognition Based on Pyramid Gray Level Co-Occurrence Matrix and Incremental Broad Learning“. Electronics 11, Nr. 15 (26.07.2022): 2322. http://dx.doi.org/10.3390/electronics11152322.
Der volle Inhalt der QuelleJae Lim, Myung, Da Eun Kim, Dong Kun Chung, Hoon Lim und Young Man Kwon. „Deep Convolution Neural Networks for Medical Image Analysis“. International Journal of Engineering & Technology 7, Nr. 3.33 (29.08.2018): 115. http://dx.doi.org/10.14419/ijet.v7i3.33.18588.
Der volle Inhalt der QuelleKode, Hepseeba, und Buket D. Barkana. „Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images“. Cancers 15, Nr. 12 (06.06.2023): 3075. http://dx.doi.org/10.3390/cancers15123075.
Der volle Inhalt der QuelleLeow, Jia Rong, Wee How Khoh, Ying Han Pang und Hui Yen Yap. „Breast cancer classification with histopathological image based on machine learning“. International Journal of Electrical and Computer Engineering (IJECE) 13, Nr. 5 (01.10.2023): 5885. http://dx.doi.org/10.11591/ijece.v13i5.pp5885-5897.
Der volle Inhalt der QuelleTummala, Sudhakar, Jungeun Kim und Seifedine Kadry. „BreaST-Net: Multi-Class Classification of Breast Cancer from Histopathological Images Using Ensemble of Swin Transformers“. Mathematics 10, Nr. 21 (04.11.2022): 4109. http://dx.doi.org/10.3390/math10214109.
Der volle Inhalt der QuelleKaplun, Dmitry, Alexander Krasichkov, Petr Chetyrbok, Nikolay Oleinikov, Anupam Garg und Husanbir Singh Pannu. „Cancer Cell Profiling Using Image Moments and Neural Networks with Model Agnostic Explainability: A Case Study of Breast Cancer Histopathological (BreakHis) Database“. Mathematics 9, Nr. 20 (17.10.2021): 2616. http://dx.doi.org/10.3390/math9202616.
Der volle Inhalt der QuelleChopra, Pooja, N. Junath, Sitesh Kumar Singh, Shakir Khan, R. Sugumar und Mithun Bhowmick. „Cyclic GAN Model to Classify Breast Cancer Data for Pathological Healthcare Task“. BioMed Research International 2022 (21.07.2022): 1–12. http://dx.doi.org/10.1155/2022/6336700.
Der volle Inhalt der QuelleElshafey, Mohamed Abdelmoneim, und Tarek Elsaid Ghoniemy. „A hybrid ensemble deep learning approach for reliable breast cancer detection“. International Journal of Advances in Intelligent Informatics 7, Nr. 2 (19.04.2021): 112. http://dx.doi.org/10.26555/ijain.v7i2.615.
Der volle Inhalt der QuelleYang, Yunfeng, und Chen Guan. „Classification of histopathological images of breast cancer using an improved convolutional neural network model“. Journal of X-Ray Science and Technology 30, Nr. 1 (22.01.2022): 33–44. http://dx.doi.org/10.3233/xst-210982.
Der volle Inhalt der QuelleSaha, Priya, Puja Das, Niharika Nath und Mrinal Kanti Bhowmik. „Estimation of Abnormal Cell Growth and MCG-Based Discriminative Feature Analysis of Histopathological Breast Images“. International Journal of Intelligent Systems 2023 (30.06.2023): 1–12. http://dx.doi.org/10.1155/2023/6318127.
Der volle Inhalt der QuelleHao, Yan, Li Zhang, Shichang Qiao, Yanping Bai, Rong Cheng, Hongxin Xue, Yuchao Hou, Wendong Zhang und Guojun Zhang. „Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix“. PLOS ONE 17, Nr. 5 (05.05.2022): e0267955. http://dx.doi.org/10.1371/journal.pone.0267955.
Der volle Inhalt der QuelleLee, Jiann-Shu, und Wen-Kai Wu. „Breast Tumor Tissue Image Classification Using DIU-Net“. Sensors 22, Nr. 24 (14.12.2022): 9838. http://dx.doi.org/10.3390/s22249838.
Der volle Inhalt der QuelleAshurov, Asadulla, Samia Allaoua Chelloug, Alexey Tselykh, Mohammed Saleh Ali Muthanna, Ammar Muthanna und Mehdhar S. A. M. Al-Gaashani. „Improved Breast Cancer Classification through Combining Transfer Learning and Attention Mechanism“. Life 13, Nr. 9 (21.09.2023): 1945. http://dx.doi.org/10.3390/life13091945.
Der volle Inhalt der QuelleAlqahtani, Yahya, Umakant Mandawkar, Aditi Sharma, Mohammad Najmus Saquib Hasan, Mrunalini Harish Kulkarni und R. Sugumar. „Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model“. Computational Intelligence and Neuroscience 2022 (29.08.2022): 1–11. http://dx.doi.org/10.1155/2022/7075408.
Der volle Inhalt der QuelleBurçak, Kadir Can, und Harun Uğuz. „A New Hybrid Breast Cancer Diagnosis Model Using Deep Learning Model and ReliefF“. Traitement du Signal 39, Nr. 2 (30.04.2022): 521–29. http://dx.doi.org/10.18280/ts.390214.
Der volle Inhalt der QuelleAsare, Sarpong Kwadwo, Fei You und Obed Tettey Nartey. „A Semisupervised Learning Scheme with Self-Paced Learning for Classifying Breast Cancer Histopathological Images“. Computational Intelligence and Neuroscience 2020 (08.12.2020): 1–16. http://dx.doi.org/10.1155/2020/8826568.
Der volle Inhalt der QuelleTangsakul, Surasak, und Sartra Wongthanavasu. „Deep Cellular Automata-Based Feature Extraction for Classification of the Breast Cancer Image“. Applied Sciences 13, Nr. 10 (15.05.2023): 6081. http://dx.doi.org/10.3390/app13106081.
Der volle Inhalt der QuelleBoumaraf, Said, Xiabi Liu, Yuchai Wan, Zhongshu Zheng, Chokri Ferkous, Xiaohong Ma, Zhuo Li und Dalal Bardou. „Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation“. Diagnostics 11, Nr. 3 (16.03.2021): 528. http://dx.doi.org/10.3390/diagnostics11030528.
Der volle Inhalt der QuelleWang, Jiatong, Tiantian Zhu, Shan Liang, R. Karthiga, K. Narasimhan und V. Elamaran. „Binary and Multiclass Classification of Histopathological Images Using Machine Learning Techniques“. Journal of Medical Imaging and Health Informatics 10, Nr. 9 (01.08.2020): 2252–58. http://dx.doi.org/10.1166/jmihi.2020.3124.
Der volle Inhalt der QuelleJakkaladiki, Sudha Prathyusha, und Filip Maly. „An efficient transfer learning based cross model classification (TLBCM) technique for the prediction of breast cancer“. PeerJ Computer Science 9 (21.03.2023): e1281. http://dx.doi.org/10.7717/peerj-cs.1281.
Der volle Inhalt der QuelleClement, David, Emmanuel Agu, Muhammad A. Suleiman, John Obayemi, Steve Adeshina und Wole Soboyejo. „Multi-Class Breast Cancer Histopathological Image Classification Using Multi-Scale Pooled Image Feature Representation (MPIFR) and One-Versus-One Support Vector Machines“. Applied Sciences 13, Nr. 1 (22.12.2022): 156. http://dx.doi.org/10.3390/app13010156.
Der volle Inhalt der QuelleClement, David, Emmanuel Agu, John Obayemi, Steve Adeshina und Wole Soboyejo. „Breast Cancer Tumor Classification Using a Bag of Deep Multi-Resolution Convolutional Features“. Informatics 9, Nr. 4 (28.10.2022): 91. http://dx.doi.org/10.3390/informatics9040091.
Der volle Inhalt der QuelleLu, Shida, Kai Huang, Talha Meraj und Hafiz Tayyab Rauf. „A novel CAPTCHA solver framework using deep skipping Convolutional Neural Networks“. PeerJ Computer Science 8 (06.04.2022): e879. http://dx.doi.org/10.7717/peerj-cs.879.
Der volle Inhalt der QuelleTao, Ran, Zhaoya Gong, Qiwei Ma und Jean-Claude Thill. „Boosting Computational Effectiveness in Big Spatial Flow Data Analysis with Intelligent Data Reduction“. ISPRS International Journal of Geo-Information 9, Nr. 5 (06.05.2020): 299. http://dx.doi.org/10.3390/ijgi9050299.
Der volle Inhalt der QuelleTang, Yansong, Xingyu Liu, Xumin Yu, Danyang Zhang, Jiwen Lu und Jie Zhou. „Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based Action Recognition“. ACM Transactions on Multimedia Computing, Communications, and Applications 18, Nr. 2 (31.05.2022): 1–24. http://dx.doi.org/10.1145/3472722.
Der volle Inhalt der QuelleIsthigosah, Maie, Andi Sunyoto und Tonny Hidayat. „Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks“. sinkron 8, Nr. 4 (01.10.2023): 2381–92. http://dx.doi.org/10.33395/sinkron.v8i4.12878.
Der volle Inhalt der QuelleLaporte, Matias, Martin Gjoreski und Marc Langheinrich. „LAUREATE“. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, Nr. 3 (27.09.2023): 1–41. http://dx.doi.org/10.1145/3610892.
Der volle Inhalt der Quelle