Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Carbon nanodot“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Carbon nanodot" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Carbon nanodot"
Liu, Jing, Miftakhul Huda, Zulfakri bin Mohamad, Hui Zhang, You Yin und Sumio Hosaka. „Fabrication of Carbon Nanodot Arrays with a Pitch of 20 nm for Pattern-Transfer of PDMS Self-Assembled Nanodots“. Key Engineering Materials 596 (Dezember 2013): 88–91. http://dx.doi.org/10.4028/www.scientific.net/kem.596.88.
Der volle Inhalt der QuelleYue, Yuxue, Bolin Wang, Saisai Wang, Chunxiao Jin, Jinyue Lu, Zheng Fang, Shujuan Shao et al. „Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination“. Chemical Communications 56, Nr. 38 (2020): 5174–77. http://dx.doi.org/10.1039/c9cc09701e.
Der volle Inhalt der QuelleJung, Hyun Kyung, und Hyung Woo Lee. „Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes“. Journal of Nanomaterials 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/270989.
Der volle Inhalt der QuellePai, Yi-Hao, und Gong-Ru Lin. „Electrochemical Reduction of Uniformly Dispersed Pt and Ag Nanodots on Carbon Fiber Electrodes“. Journal of Nanomaterials 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/384601.
Der volle Inhalt der QuelleBiswas, Abhijit, Subir Paul und Arindam Banerjee. „Carbon nanodots, Ru nanodots and hybrid nanodots: preparation and catalytic properties“. Journal of Materials Chemistry A 3, Nr. 29 (2015): 15074–81. http://dx.doi.org/10.1039/c5ta03355a.
Der volle Inhalt der QuelleAkahane, Takashi, Takuya Komori, Jing Liu, Miftakhul Huda, Zulfakri bin Mohamad, You Yin und Sumio Hosaka. „Improved Observation Contrast of Block-Copolymer Nanodot Pattern Using Carbon Hard Mask (CHM)“. Key Engineering Materials 534 (Januar 2013): 126–30. http://dx.doi.org/10.4028/www.scientific.net/kem.534.126.
Der volle Inhalt der QuelleLiu, Xue, Xiuping Tang, Yu Hou, Qiuhua Wu und Guolin Zhang. „Fluorescent nanothermometers based on mixed shell carbon nanodots“. RSC Advances 5, Nr. 99 (2015): 81713–22. http://dx.doi.org/10.1039/c5ra12541c.
Der volle Inhalt der QuelleIhwan, Muh Al, und Zuhdan Kun Prasetyo. „Utilization of Corn Oil as a Photocatalyst of Carbon Nanodots for Wastewater Cleaning“. Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, Nr. 2 (08.10.2022): 171–78. http://dx.doi.org/10.26740/jpfa.v11n2.p171-178.
Der volle Inhalt der QuelleSun, Ming-Ye, You-Jin Zheng, Lei Zhang, Li-Ping Zhao und Bing Zhang. „Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO 2 nanocomposites under visible light“. Chinese Physics B 26, Nr. 5 (Mai 2017): 058101. http://dx.doi.org/10.1088/1674-1056/26/5/058101.
Der volle Inhalt der QuelleKnoblauch, Rachael, Amanda Harvey, Estelle Ra, Ken M. Greenberg, Judy Lau, Elizabeth Hawkins und Chris D. Geddes. „Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots“. Nanoscale 13, Nr. 1 (2021): 85–99. http://dx.doi.org/10.1039/d0nr06842j.
Der volle Inhalt der QuelleDissertationen zum Thema "Carbon nanodot"
Sahakalkan, Serhat [Verfasser], und David [Akademischer Betreuer] Wharam. „Spin Transport in Carbon Nanotubes with Circular Nanodot Contacts / Serhat Sahakalkan ; Betreuer: David Wharam“. Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1182985432/34.
Der volle Inhalt der QuelleKim, Tak Hyuan. „Synthesis and Applications of Carbon Nanodots“. Thesis, Griffith University, 2016. http://hdl.handle.net/10072/366029.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Sciortino, Alice. „The Fundamental Photophysics of Fluorescent Carbon Nanodots“. Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4125.
Der volle Inhalt der QuelleBRUNO, Federico. „OPTICAL SENSING OF POLLUTANTS BY FLUORESCENT CARBON NANODOTS“. Doctoral thesis, Università degli Studi di Palermo, 2022. http://hdl.handle.net/10447/560721.
Der volle Inhalt der QuelleCarrara, Serena. „Towards new efficient nanostructured hybrid materials for ECL applications“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF016/document.
Der volle Inhalt der QuelleThis doctoral dissertation aim to develop new hybrid materials for ECL applications. In the field of metal complexes, the electrochemiluminescent properties of new Pt(II) and Ir(III) complexes were investigated as alternative of existing complexes. Passing to nanomaterials, the combination of labels and NCNDs bearing primary or tertiary groups on the surface as alternative co-reactant species resulted an interesting strategy to eliminate the toxic TPrA. In particular, NCNDs in covalently linked system with metal complexes is not only an innocent carrier for ECL active species, but act also as co-reactant in the ECL process, revealing itself an ECL self-enhancing platform. Finally, a real immunoassay for cardiac marker detection has been built with enhanced sensitivity and stability, which is of fundamental importance for biological and bio-medical detection applications. The same technology can be applied to a variety of other analytes opening the venue to other assays
Yeom, Sin Hea. „TEMPERATURE-DEPENDENT TUNABLE PHOTOLUMINESCENCE PROPERTIES OF CARBON NANODOTS DERIVED FROM POLYETHYLENE GLYCOL“. UKnowledge, 2014. http://uknowledge.uky.edu/chemistry_etds/46.
Der volle Inhalt der QuelleNewman, Peter Lionel Harry. „Carbon Nanotubes for Bone Tissue Engineering“. Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16308.
Der volle Inhalt der QuelleRolihlahla, Bangile Noel. „Electrochemistry and photophysics of carbon nanodots-decorated nigs(Ni(In, Ga)Se2) quantum dots“. university of western cape, 2020. http://hdl.handle.net/11394/7309.
Der volle Inhalt der QuelleCurrently, non-renewable sources are mostly used to meet the ever-growing demand for energy. However, these sources are not sustainable. In addition to these energy sources being not sustainable, they are bad for the environment although the energy supply sectors highly depend on them. To address such issues the use of renewable energy sources has been proven to be beneficial for the supply of energy for the global population and its energy needs. Advantageous over non-renewable sources, renewable energy plays a crucial role in minimizing the use of fossil fuel and reduces greenhouse gases. Minimizing use of fossil fuels and greenhouse gases is important, because it helps in the fight against climate change. The use of renewable energy sources can also lead to less air pollution and improved air quality. Although solar energy is the most abundant source of renewable energy that can be converted into electrical energy using various techniques, there are some limitations. Among these techniques are photovoltaic cells which are challenged by low efficiencies and high costs of material fabrication. Hence, current research and innovations are sought towards the reduction of costs and increasing the efficiency of the renewable energy conversion devices.
Li, Yibing. „Graphitic Carbon-Based Functional Nanomaterials for Environmental Remediation and Energy Conversion Applications“. Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366091.
Der volle Inhalt der QuelleThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Yan, Huijie [Verfasser], und Alf [Akademischer Betreuer] Mews. „Triple labelled gold nanoparticles and fluorescent carbon nanodots as platforms for cell/nanoparticles interaction studies / Huijie Yan ; Betreuer: Alf Mews“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1215840527/34.
Der volle Inhalt der QuelleBücher zum Thema "Carbon nanodot"
1961-, Dai Liming, Hrsg. Carbon nanotechnology: Recent developments in chemistry, physics, materials science and applications. Amsterdam: Elsevier, 2006.
Den vollen Inhalt der Quelle findenPhysical Properties of Carbon Nanotubes. World Scientific Publishing Company, 1998.
Den vollen Inhalt der Quelle findenNews, World Spaceflight. 21st Century Complete Guide to Space Flight and Nanotechnology: NASA Research into Nanoscale Materials for Future Spacecraft, Rockets, and Space Exploration Programs ¿ Robotics, Sensors, Nanobots, Carbon Nanotubes, Nanowires, Nanofluidics, Tethers, Artificial Intelligence, Rovers, Dozens of Movie Animations (CD-ROM). Progressive Management, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Carbon nanodot"
Huang, Hui, Yang Liu und Zhenhui Kang. „Carbon Nanodot Composites: Fabrication, Properties, and Environmental and Energy Applications“. In Novel Carbon Materials and Composites, 223–73. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119313649.ch8.
Der volle Inhalt der QuelleJiang, Shan, Kornelia Gawlitza und Knut Rurack. „Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell“. In Molecularly Imprinted Polymers, 195–208. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1_17.
Der volle Inhalt der QuelleQi, Bao-Ping, Guo-Jun Zhang, Zhi-Ling Zhang und Dai-Wen Pang. „Photoluminescent Properties of Carbon Nanodots“. In Carbon Nanoparticles and Nanostructures, 239–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28782-9_7.
Der volle Inhalt der QuelleZhang, Xiaodong, Xiaokai Chen und Fu-Gen Wu. „Carbon Nanodots for Cell Imaging“. In Fluorescent Materials for Cell Imaging, 49–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5062-1_3.
Der volle Inhalt der QuelleJung, Yun Kyung, Yuri Choi und Byeong-Su Kim. „Functionalized Carbon Nanodots for Biomedical Applications“. In Springer Series in Biomaterials Science and Engineering, 299–317. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22861-7_10.
Der volle Inhalt der QuelleLemberger, Michael-M., Thomas Hirsch und Joachim Wegener. „Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications“. In Measuring Biological Impacts of Nanomaterials, 135–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/11663_2014_11.
Der volle Inhalt der QuelleChoudhury, Biswajit. „Chapter 8. Composites of Carbon Nanodots for Hydrogen Energy Generation“. In All-carbon Composites and Hybrids, 173–95. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00173.
Der volle Inhalt der QuelleLiang, J. N., und X. H. Yang. „Carbon Nanodots Doped Graphite Carbon Nitride Towards Highly Efficient Visible Light Driven-Photocatalytic Hydrogen Evolution“. In Springer Proceedings in Physics, 1–12. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1774-5_1.
Der volle Inhalt der QuelleLi, H., Z. Lin und D. Fu. „Carbon paper electrode coated with TiO2 nanorod arrays for electro-assisted photocatalytic degradation of Cr (VI) and methylene blue“. In Advances in Energy and Environment Research, 49–52. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315212876-11.
Der volle Inhalt der QuelleAlaş, Melis Özge, und Rükan Genç. „Carbon nanodot integrated solar energy devices“. In Sustainable Material Solutions for Solar Energy Technologies, 497–535. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-821592-0.00017-0.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Carbon nanodot"
Chen, Taihao, Yong Fang, Chifeng Song, Keyang Zhang, Yifan Gao, Zikang Han und Zhiwei Zhao. „A Vertical Structured Solar-blind Ultraviolet Photodetector Based on the Carbon Nanodot/Graphene Heterojunction“. In 2022 5th International Conference on Circuits, Systems and Simulation (ICCSS). IEEE, 2022. http://dx.doi.org/10.1109/iccss55260.2022.9802226.
Der volle Inhalt der QuelleMathew, Raji Mary, Elsa Susan Zachariah, Jasmine Jose, Jancy John, Timi Titus und Vinoy Thomas. „Optically active carbon nanodot—A facile platform for the selective sensing of chromium (VI) ion“. In 16TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-16). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0030184.
Der volle Inhalt der QuelleZABELINA, Anna, Denis ZABELIN, Vaclav ŠVORČÍK und Oleksiy LYUTAKOV. „PHOTOCATALYTIC HYDROGENATION OF carbon-carbon TRIPLE BOND“. In NANOCON 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/nanocon.2021.4334.
Der volle Inhalt der QuelleKang, Zhenhui. „Carbon nanodots promise catalytic applications“. In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu2c.2.
Der volle Inhalt der QuelleNOVIKOV, Vseslav, Marina KOVALEVA, Igor GONCHAROV, Maxim YAPRYNTSEV, Yuri TYURIN, Viacheslav SIROTA und Olga VAGINA. „STRUCTURAL-PHASE STATE OF NANOCOMPOSITE ZrB2-MoSi2 COATINGS FOR CARBON/CARBON COMPOSITES DEPOSITED BY A NEW MULTI-CHAMBER DETONATION ACCELERATOR“. In NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8657.
Der volle Inhalt der QuelleHOLEC, Pavel, Ivan ULMAN, Radek JIRKOVEC und Jakub VANĚK. „Production of fibrous composite material with incorporated activated carbon“. In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3705.
Der volle Inhalt der QuellePRICILLA, R. Blessy, David ŠKODA, Pavel URBÁNEK, Michal URBÁNEK und Ivo KUŘITKA. „FACILE MICROWAVE –ASSISTED SYNTHESIS OF CASEIN DERIVED CARBON NANODOTS“. In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3681.
Der volle Inhalt der QuelleNOVOTNÁ, Jana, Blanka TOMKOVÁ und Jana MÜLLEROVÁ. „DIELECTRICAL ANALYSIS OF COMPOSITE MATERIALS WITH RECYCLED CARBON FIBERS“. In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3690.
Der volle Inhalt der QuelleMARQUES, Susana C. R., und Jan FILIP. „Carbon materials prepared from cigarette filters APPLIED for clofibric acid adorption“. In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3733.
Der volle Inhalt der QuelleSLOBODIAN, Rostislav, Robert OLEJNÍK, Jiří MATYÁŠ und Petr SLOBODIAN. „The sensing properties of carbon nanotube filled copolymers for VOC vapors detection“. In NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3695.
Der volle Inhalt der Quelle