Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Catalytic C-H“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Catalytic C-H" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Catalytic C-H"
Hilinski, Michael, Shea Johnson und Logan Combee. „Organocatalytic Atom-Transfer C(sp3)–H Oxidation“. Synlett 29, Nr. 18 (27.06.2018): 2331–36. http://dx.doi.org/10.1055/s-0037-1610432.
Der volle Inhalt der QuelleZhang, Hua, und Li Wang. „Metal-Free Catalytic Aromatic C–H Borylation“. Synlett 31, Nr. 19 (11.08.2020): 1857–61. http://dx.doi.org/10.1055/s-0040-1707241.
Der volle Inhalt der QuelleKakiuchi, Fumitoshi, und Shinji Murai. „Catalytic C−H/Olefin Coupling“. Accounts of Chemical Research 35, Nr. 10 (Oktober 2002): 826–34. http://dx.doi.org/10.1021/ar960318p.
Der volle Inhalt der QuelleMurai, S., F. Kakiuchi, S. Sekine, Y. Tanaka, Asayuki Kamatani, M. Sonoda und Naoto Chatani. „Catalytic C-H/olefin coupling“. Pure and Applied Chemistry 66, Nr. 7 (01.01.1994): 1527–34. http://dx.doi.org/10.1351/pac199466071527.
Der volle Inhalt der QuelleBach, T., A. Nörder, P. Herrmann und E. Herdtweck. „Diastereoselective Catalytic C-H Amination“. Synfacts 2010, Nr. 10 (22.09.2010): 1141. http://dx.doi.org/10.1055/s-0030-1258647.
Der volle Inhalt der QuelleChen, Qing-An, Wei-Song Zhang und Yan-Cheng Hu. „Isoprene: A Promising Coupling Partner in C–H Functionalizations“. Synlett 31, Nr. 17 (02.07.2020): 1649–55. http://dx.doi.org/10.1055/s-0040-1707172.
Der volle Inhalt der QuelleNishii, Yuji, und Masahiro Miura. „Construction of Benzo-Fused Polycyclic Heteroaromatic Compounds through Palladium-Catalyzed Intramolecular C-H/C-H Biaryl Coupling“. Catalysts 13, Nr. 1 (22.12.2022): 12. http://dx.doi.org/10.3390/catal13010012.
Der volle Inhalt der QuelleCollet, Florence, Camille Lescot, Chungen Liang und Philippe Dauban. „Studies in catalytic C–H amination involving nitrene C–H insertion“. Dalton Transactions 39, Nr. 43 (2010): 10401. http://dx.doi.org/10.1039/c0dt00283f.
Der volle Inhalt der QuelleBedford, Robin B., Charlotte J. Mitchell und Ruth L. Webster. „Solvent free catalytic C–H functionalisation“. Chemical Communications 46, Nr. 18 (2010): 3095. http://dx.doi.org/10.1039/c003074k.
Der volle Inhalt der QuelleYoung, Andrew J., und M. Christina White. „Catalytic Intermolecular Allylic CH Alkylation“. Journal of the American Chemical Society 130, Nr. 43 (29.10.2008): 14090–91. http://dx.doi.org/10.1021/ja806867p.
Der volle Inhalt der QuelleDissertationen zum Thema "Catalytic C-H"
Leitch, Jamie. „Site selective catalytic C-H functionalisation“. Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767559.
Der volle Inhalt der QuelleReynolds, William. „Sequential processes involving catalytic C-H functionalisation“. Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.642028.
Der volle Inhalt der QuellePaterson, Andrew. „Selective catalytic C-H functionalisation for drug discovery“. Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720659.
Der volle Inhalt der QuelleIngner, Fredric. „Preparation of carbazolyne precursors through catalytic C-H functionalization“. Thesis, Uppsala universitet, Organisk kemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-307497.
Der volle Inhalt der QuelleGallardo, Donaire Juan. „Synthesis of phthalides and benzolactones via catalytic C-H functionalization/C-O bond-forming“. Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/276960.
Der volle Inhalt der QuelleThe main objective of this Thesis has been the activation of inert C-H bonds catalytically for the construction of C-O bonds. The fist project developed consisted on the activation of C(sp3)-H bonds for the direct synthesis of phthalides catalyzed by Pd, employing simple benzoic acids as starting materials. Continuing in the same research line, the second project described deals with the utilization of cheaper and easy to handle Cu salts as catalyst for the functionalization of C(sp2)-H bonds towards the formation of C-O bonds for the synthesis of benzolactones. Finally, the last project discovered handles a metal-free C-H functionalization approach for the synthesis of benzolactones by using simple iodoarenes as catalyst, thus
Stateman, Leah Marie. „Catalytic Strategies for Remote C-H Functionalization of Alcohols and Amines“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587554146078308.
Der volle Inhalt der QuelleWang, Chang-Sheng. „Selective catalytic C(sp²)–H and C(sp³)–H bond functionalizations for the synthesis of phosphorus and nitrogen containing molecules“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S106/document.
Der volle Inhalt der QuelleIn the first chapter, we have developed an efficient approach for the fast modification of arylphosphine oxides using ruthenium(II)-catalyzed C–H bond functionalization with alkenes. Interestingly, we have found that the selectivity of the reaction, namely alkylation versus alkenylation, is depending on the reaction pH. The reduction of the phosphine oxide allows the formation of aryl phosphines bearing a flexible pendent carboxylate. In the second objective, a copper-catalyzed oxidative C(sp3)–H/N–H coupling of NH-heterocycles with affordable (cyclo)alkanes was developed. This protocol involved C(sp3)–N bond formation via a radical pathway generated by a homolytic cleavage of di-tert-butyl peroxide and trapping of the radical(s) by copper catalyst.In a third part, benzylic C(sp3)–H acyloxylation of 2-alkylpyridine, 2-alkylpyrazine and 2-alkylthiazole compounds was achieved using simple aldehydes via a copper-catalyzed tandem reaction, involving oxidative esterification followed by O-atom transfer. Finally, pyridin-2-ylmethyl tosylate derivatives are obtained in high yields from 2-alkylpyridine N-oxides via a [3,3]-sigmatropic rearrangement of the adduct between 2-alkylpridine N-oxides with benzenesolfonyl chlorides. Moreover, alkylnitrones also underwant [3,3]-sigmatropic rearrangement to give α-tosylated ketones after hydrolysis
Gerdes, Gerd. „Catalytic C-H activation of benzene by plantinum(II) : a mechanistic study /“. Zürich, 2004. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=15631.
Der volle Inhalt der QuelleSankey, Rosalind Fay. „Beyond C-H activation : the preparation of novel heterocycles using catalytic dearomatisation“. Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559388.
Der volle Inhalt der QuelleKhan, Imtiaz. „Enolate-directed catalytic C-H functionalization of 2-aryl-1,3-dicarbonyl compounds“. Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30261/.
Der volle Inhalt der QuelleBücher zum Thema "Catalytic C-H"
Dixneuf, Pierre H., und Henri Doucet, Hrsg. C-H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29319-6.
Der volle Inhalt der QuelleDixneuf, Pierre H., und Henri Doucet, Hrsg. C-H Bond Activation and Catalytic Functionalization I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24630-7.
Der volle Inhalt der QuelleJacques, Teresa. I : Catalytic Direct C-H Arylation of Pyrazoles. II: Toward Modulation of Neuroplasticity with Small Molecules. [New York, N.Y.?]: [publisher not identified], 2013.
Den vollen Inhalt der Quelle findenPérez, Pedro J., Hrsg. Alkane C-H Activation by Single-Site Metal Catalysis. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-3698-8.
Der volle Inhalt der QuelleBergeld, Johan. Thermo- and photostimulated reactions of H₂O, O₂, and CO on Pt(111) and C(0001) surfaces. Göteborg: Göteborg University, Department of Physics, 2007.
Den vollen Inhalt der Quelle findenCatalytic Transformations Via C-H Activation 1. Thieme Verlag, George, 2016.
Den vollen Inhalt der Quelle findenDixneuf, Pierre H., und Henri Doucet. C-H Bond Activation and Catalytic Functionalization II. Springer London, Limited, 2016.
Den vollen Inhalt der Quelle findenDixneuf, Pierre H., und Henri Doucet. C-H Bond Activation and Catalytic Functionalization II. Springer, 2016.
Den vollen Inhalt der Quelle findenDixneuf, Pierre H., und Henri Doucet. C-H Bond Activation and Catalytic Functionalization I. Springer, 2018.
Den vollen Inhalt der Quelle findenDixneuf, Pierre H., und Henri Doucet. C-H Bond Activation and Catalytic Functionalization I. Springer London, Limited, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Catalytic C-H"
Tomin, Anna, Seema Bag und Béla Török. „Catalytic CH Bond Activation Reactions“. In Green Techniques for Organic Synthesis and Medicinal Chemistry, 67–97. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9780470711828.ch4.
Der volle Inhalt der QuelleGhosh, Pradip, Marc-Etienne Moret und Robertus J. M. Klein Gebbink. „Catalytic Oxygenation of CC and CH Bonds“. In Non-Noble Metal Catalysis, 355–89. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527699087.ch14.
Der volle Inhalt der QuelleLi, Jie, Suman De Sarkar und Lutz Ackermann. „meta- and para-Selective C–H Functionalization by C–H Activation“. In C-H Bond Activation and Catalytic Functionalization I, 217–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_130.
Der volle Inhalt der QuelleKakiuchi, Fumitoshi, und Shinji Murai. „Activation of C-H Bonds: Catalytic Reactions“. In Activation of Unreactive Bonds and Organic Synthesis, 47–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-68525-1_3.
Der volle Inhalt der QuelleKakiuchi, Fumitoshi. „Catalytic Addition of C – H Bonds to C – C Multiple Bonds“. In Topics in Organometallic Chemistry, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/3418_2007_064.
Der volle Inhalt der QuelleLiu, Zhanxiang, und Yuhong Zhang. „Catalytic C-H Bond Cleavage for Heterocyclic Compounds“. In Green Techniques for Organic Synthesis and Medicinal Chemistry, 131–59. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119288152.ch7.
Der volle Inhalt der QuelleSustac Roman, Daniela, und André B. Charette. „Catalytic C–H Bond Functionalization of Cyclopropane Derivatives“. In Topics in Organometallic Chemistry, 91–113. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_118.
Der volle Inhalt der QuelleDana, Suman, M. Ramu Yadav und Akhila K. Sahoo. „Ruthenium-Catalyzed C−N and C−O Bond-Forming Processes from C−H Bond Functionalization“. In C-H Bond Activation and Catalytic Functionalization I, 189–215. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_126.
Der volle Inhalt der QuelleWencel-Delord, Joanna, Frederic W. Patureau und Frank Glorius. „Rh(III)- and Ir(III)-Catalyzed C–C Bond Cross Couplings from C–H Bonds“. In C-H Bond Activation and Catalytic Functionalization I, 1–27. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_140.
Der volle Inhalt der QuelleDailler, David, Grégory Danoun und Olivier Baudoin. „Applications of Catalytic Organometallic C(sp3)–H Bond Functionalization“. In Topics in Organometallic Chemistry, 133–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_122.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Catalytic C-H"
SANFORD, MELANIE. „CONTROLLING SELECTIVITY AND REACTIVITY IN CATALYTIC C–H FUNCTIONALIZATION REACTIONS“. In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0003.
Der volle Inhalt der QuelleLian, T., S. E. Bromberg, H. Yang, M. Asplund, R. G. Bergman und C. B. Harris. „Femtosecond IR Studies of Alkane C-H Bond Activation by Organometallic Compounds“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.27a.
Der volle Inhalt der QuelleLe, Anh Ngoc Tram, Hung Hoa Lam, Tuyet Mai Tran Thuy, Long Quang Nguyen, Ngo Tran Hoang Duong, Thuan Minh Nguyen und Dung Van Nguyen. „Facile Preparation of Multifunctional Ag-Fe<sub>x</sub>O<sub>y</sub>/C Composite from Coffee Husk for Antibacterial and Catalytic Applications“. In 5th International Conference on Advanced Materials Science. Switzerland: Trans Tech Publications Ltd, 2023. http://dx.doi.org/10.4028/p-58b9m3.
Der volle Inhalt der QuelleHui, K. S., und Christopher Y. H. Chao. „Conversion of Coal Fly Ash Into Zeolite 4A and Its Applications in Waste Water Treatment and Greenhouse Gas Reduction“. In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41361.
Der volle Inhalt der QuelleCirujano, Francisco. „Ionic liquids vs. microporous solids as reusable reaction media for the catalytic C–H functionalization of indoles with alcohols“. In The 22nd International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/ecsoc-22-05655.
Der volle Inhalt der QuelleYin, Sudong, Yanglin Pan und Zhongchao Tan. „Catalytic Hydrothermal Conversion of Glucose to Light Petroleum Alkanes“. In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90433.
Der volle Inhalt der QuelleDumeignil, Franck, Benjamin Katryniok und Negissa Ebadi Pour. „Glycerol polymerization over stable and selective calcium hydroxyapatite“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/dpka8345.
Der volle Inhalt der QuelleChen, Guanyi, Qiang Li, Xiaoyang Lv, Na Deng und Lifei Jiao. „Production of Hydrogen-Rich Gas Through Pyrolysis of Biomass in a Two-Stage Reactor“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53582.
Der volle Inhalt der QuelleDavison, Evan, Jessica Otto, Sandeep Kumar und Randy Maglinao. „Production of Branched Esters via Continuous Alkylation of Fatty Acid Methyl Esters over Montmorillonite and h-zsm5 Catalysts“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ezak5028.
Der volle Inhalt der QuelleAmama, Placidus B., Jonathan E. Spowart, Andrey A. Voevodin und Timothy S. Fisher. „Modified Magnesium Hydride and Calcium Borohydride for High-Capacity Thermal Energy Storage“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44133.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Catalytic C-H"
Crabtree, Robert. Moving to Sustainable Metals: Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation. Office of Scientific and Technical Information (OSTI), März 2015. http://dx.doi.org/10.2172/1171638.
Der volle Inhalt der Quelle