Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Ceb6.

Zeitschriftenartikel zum Thema „Ceb6“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ceb6" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Cui, Xuehong, Jinming Zhu, Ketong Luo und Jianlie Liang. „Phase relationships in the Ce–Nd–B system at 773 K“. International Journal of Materials Research 111, Nr. 6 (01.07.2020): 526–32. http://dx.doi.org/10.1515/ijmr-2020-1110610.

Der volle Inhalt der Quelle
Annotation:
Abstract Phase relationships in the Ce-Nd-B ternary system at 773 K were investigated by means of X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy techniques. Six borides, i. e. CeB4, CeB6, NdB4, NdB6, NdB66 and Nd2B5 are confirmed in this work. No ternary compound was observed. CeB4 and NdB4 were discovered to form the continuous solid solution phase (Ce,Nd)B4, CeB6 and NdB6 also form the solid solution phase (Ce,Nd)B6. The maximum solid solubility of Ce in (Ce,Nd)2B5 phase is 46.5 at.%. The isothermal section of the Ce-Nd-B ternary system at 773 K consists of 3 three-phase regions, 7 two-phase regions and 7 single- phase regions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schlösser, Andreas, Jens Jantos, Karl Hackmann und Hildgund Schrempf. „Characterization of the Binding Protein-Dependent Cellobiose and Cellotriose Transport System of the Cellulose Degrader Streptomyces reticuli“. Applied and Environmental Microbiology 65, Nr. 6 (01.06.1999): 2636–43. http://dx.doi.org/10.1128/aem.65.6.2636-2643.1999.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Streptomyces reticuli has an inducible ATP-dependent uptake system specific for cellobiose and cellotriose. By reversed genetics a gene cluster encoding components of a binding protein-dependent cellobiose and cellotriose ABC transporter was cloned and sequenced. The deduced gene products comprise a regulatory protein (CebR), a cellobiose binding lipoprotein (CebE), two integral membrane proteins (CebF and CebG), and the NH2-terminal part of an intracellular β-glucosidase (BglC). The gene for the ATP binding protein MsiK is not linked to the ceb operon. We have shown earlier that MsiK is part of two different ABC transport systems, one for maltose and one for cellobiose and cellotriose, in S. reticuli and Streptomyces lividans. Transcription of polycistronic cebEFG and bglC mRNAs is induced by cellobiose, whereas the cebR gene is transcribed independently. Immunological experiments showed that CebE is synthesized during growth with cellobiose and that MsiK is produced in the presence of several sugars at high or moderate levels. The described ABC transporter is the first one of its kind and is the only specific cellobiose/cellotriose uptake system of S. reticuli, since insertional inactivation of the cebEgene prevents high-affinity uptake of cellobiose.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Peng, Ke Wu, He Li Ma, Chang Wei Gong, Yan Wang und Zhao Tan. „Preparation of B4C-CeB6 Porous Composites by Hot Pressed Sintering“. Advanced Materials Research 1061-1062 (Dezember 2014): 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.120.

Der volle Inhalt der Quelle
Annotation:
B4C-CeB6 porous composites are prepared by hot pressed sintering between 1900°C and 2000°C, and mechanical properties and phase composition of B4C-CeB6 porous composites were tested. The results show that the porous rate of B4C-CeB6 porous composites ranges between 30%-48% at sintering temperate 1900°C-2000°C. Porous rate of B4C-CeB6 porous composites is decreased with temperature be increased. Flexibility strength of B4C-CeB6 porous composites is greatly improved compared with that of monolithic porous boron carbide. B4C react with CeO2 to completely form CeB6 in porous composites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peng, Ke Wu, Peng Zhang, He Li Ma und Ren Chen. „Study on Reaction Products of B4C-CeB6/Al Composites“. Advanced Materials Research 391-392 (Dezember 2011): 683–87. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.683.

Der volle Inhalt der Quelle
Annotation:
B4C-CeB6/Al composite was fabricated by pressureless infiltration technology. It is composed of the phases of Al, B4C, AlB2, Al3BC and CeB6, and Al4C3 is not found because of the existence of CeB6. It could identify that AlB2, CeB6, and Al3BC were formed as interfacial reaction products. Al3BC is formed on the interface of B4C and Al; therefore it connects the aluminum with the ceramic toughly. AlB2 as strip crystal is formed between B4C and Al, which has higher fracture toughness.CeB6 particles in B4C grain boundary are discovered by TEM, which caused intercrystalline rupture. Grain toughening and reinforcing, crack deflection, crack bridging is the main toughening and reinforcing mechanisms of B4C-CeB6/Al composites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Peng, Ke Wu, He Li Ma, Chang Wei Gong, Ren Chen und Zhao Tan. „Microstructure and Reinforcing Mechanisms of Boron Carbide–Cerium Boride Porous Composites“. Advanced Materials Research 1061-1062 (Dezember 2014): 104–8. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.104.

Der volle Inhalt der Quelle
Annotation:
boron carbide–cerium boride porous composites are prepared by hot pressed sintering, and mechanical properties and microstructure of boron carbide–cerium boride porous composites were tested. The results show that Flexibility strength of B4C-CeB6 porous composites is greatly improved compared with that of monolithic porous boron carbide. B4C react with CeO2 to completely form CeB6 in porous composites. CeB6 particles in B4C grain boundary are produced by in-situ reaction. The presence of CeB6 reinforcing particles could also suppress growth of B4C grains which normally leads to improved strength.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Li, Junsuo, Zhongqi Dong und Kewu Pen. „Chemical reactions in the preparation of B4C-CeO2 composites“. E3S Web of Conferences 185 (2020): 04056. http://dx.doi.org/10.1051/e3sconf/202018504056.

Der volle Inhalt der Quelle
Annotation:
The B4C-CeO2 composites were prepared by pressure-free infiltration method. The chemical reactions and products of CeO2 and B4C in the temperature range of 20~1500 were studied by TG-DTA and X-ray diffraction analysis. The results show that the B4C and CeO2 reaction products are CeB4, B, CeBO3 in 550~1240 and the product of CeO2 reaction with B4C is CeB6 in the temperature range of 1240~1300℃.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dou, Zhi He, Ting An Zhang und Ji Cheng He. „Preparation and Characterization of Cerium Hexaboride Nanometer Powders by Combustion Synthesis“. Advanced Materials Research 236-238 (Mai 2011): 1670–74. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.1670.

Der volle Inhalt der Quelle
Annotation:
High-purity and homogeneous powders of CeB6 with nanometer size were prepared by combustion synthesis and subsequent acid- leaching. The effects of reactant ratio on the phase and morphology of the combustion product were discussed. The combustion product and leached product were analyzed by XRD, SEM and EDS. The results indicate that the combustion product consists of CeB6, MgO and Mg3B2O6. The combustion products are denser and less layered when the Mg content and KClO3 content increase. The content of CeB6 in the combustion product could be enhanced with increasing the excessive content of Mg. The purity of CeB6 is higher than 99.0% and its particles are smaller than 150nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sera, Masafumi. „Elastic Constants of CeB6“. Journal of the Physical Society of Japan 69, Nr. 7 (15.07.2000): 2299–304. http://dx.doi.org/10.1143/jpsj.69.2299.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hanzawa, Katsurou. „Hyperfine Interactions in CeB6“. Journal of the Physical Society of Japan 69, Nr. 2 (15.02.2000): 510–25. http://dx.doi.org/10.1143/jpsj.69.510.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

J. Ohkawa, Fusayoshi. „Orbital Antiferromagnetism in CeB6“. Journal of the Physical Society of Japan 54, Nr. 10 (15.10.1985): 3909–14. http://dx.doi.org/10.1143/jpsj.54.3909.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Loewenhaupt, M., J. M. Carpenter und C. K. Loong. „Magnetic excitations in CeB6“. Journal of Magnetism and Magnetic Materials 52, Nr. 1-4 (Oktober 1985): 245–49. http://dx.doi.org/10.1016/0304-8853(85)90270-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ağaoğulları, Duygu, Özge Balcı, Nazlı Akçamlı, Challapalli Suryanarayana, İsmail Duman und Mustafa Öveçoğlu. „Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride“. Processing and Application of Ceramics 13, Nr. 1 (2019): 32–43. http://dx.doi.org/10.2298/pac1901032a.

Der volle Inhalt der Quelle
Annotation:
This study reports on the mechanochemical synthesis (MCS) and consolidation of nanostructured CeB6 powders of high purity. CeB6 powders were prepared via MCS by milling CeO2, B2O3 and Mg powders in a high-energy ball mill for different milling times. The effects of milling time on the formation, microstructure and thermal behaviour of the synthesized powders were investigated and the optimum MCS duration was determined. Purified powders were obtained after HCl leaching by removing MgO by-product. The prepared powders were characterized by a number of techniques including X-ray diffraction, stereomicroscopy, scanning and transmission electron microscopy coupled with energy dispersive spectrometry, differential scanning calorimetry, atomic absorption spectrometry, particle size analysis, surface area analysis and vibrating sample magnetometry. The high-purity CeB6 powders having an average particle size of 86 nm were consolidated by cold-pressing followed by pressureless sintering at 1700 ?C for 5 h. The bulk CeB6 specimen was investigated for its microstructure, density, electrical resistivity, surface roughness and some mechanical properties (microhardness and wear behaviour). The relative density, electrical resistivity, microhardness and wear rate of the bulk CeB6 were determined as 95.2%TD, 57.50 ?W?cm, 11.65GPa and 1.46 ? 10?4 mm3/N?m, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ohkochi, Takuo, Takayuki Muro, Eiji Ikenaga, Kazuaki Togawa, Akira Yasui, Masato Kotsugi, Masaki Oura und Hitoshi Tanaka. „Multilateral surface analysis of the CeB6 electron-gun cathode used at SACLA XFEL“. Journal of Synchrotron Radiation 28, Nr. 6 (18.10.2021): 1729–36. http://dx.doi.org/10.1107/s1600577521009656.

Der volle Inhalt der Quelle
Annotation:
The CeB6(001) single crystal used as a cathode in a low-emittance electron gun and operated at the free-electron laser facility SACLA was investigated using cathode lens electron microscopy combined with X-ray spectroscopy at SPring-8 synchrotron radiation facility. Multilateral analysis using thermionic emission electron microscopy, low-energy electron microscopy, ultraviolet and X-ray photoemission electron microscopy and hard X-ray photoemission spectroscopy revealed that the thermionic electrons are emitted strongly and evenly from the CeB6 surface after pre-activation treatment (annealing at 1500°C for >1 h) and that the thermionic emission intensity as well as elemental composition vary between the central area and the edge of the old CeB6 surface.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wang, Jian, Chuanxi Zhu, Fanshun Meng, Gaobin Liu, Yue Gu, Hongde Wang, Shoushan Gao und Kaiming Wang. „Work functions of metal hexaborides: Density functional study“. Modern Physics Letters B 32, Nr. 02 (20.01.2018): 1850007. http://dx.doi.org/10.1142/s0217984918500070.

Der volle Inhalt der Quelle
Annotation:
We present a systematic theoretical investigation on the work functions of five closed surfaces of metal hexaborides including LaB6, BaB6, CaB6, CeB6, SrB6 and SmB6. The results are in a close agreement with available experimental measurements and previous theoretical findings. The variations of the work function display a good trend. For BaB6, CaB6 and SrB6, the increasing order is [Formula: see text](100) [Formula: see text](110) [Formula: see text](211) [Formula: see text](112) [Formula: see text](111). For CeB6, LaB6, and SmB6, the sequence is somewhat different: [Formula: see text](100) [Formula: see text](211) [Formula: see text](112) [Formula: see text](110) [Formula: see text](111). The work function changes with the metal hexaborides series have also been discussed. The increasing order of the (100) surface is LaB6(100) [Formula: see text] CeB6(100) [Formula: see text] SmB6(100) [Formula: see text] SrB6(100) [Formula: see text] BaB6(100) [Formula: see text] CaB6(100). The orders for the (110) and (111) surface are similar: BaB6(110, 111) [Formula: see text] SrB6(110, 111) [Formula: see text] LaB6(110, 111) [Formula: see text] CeB6(110, 111) [Formula: see text] CaB6(110, 111) [Formula: see text] SmB6(110, 111). For the (112) and (211) surface, the sequence is BaB6(112, 211) [Formula: see text] LaB6(112, 211) [Formula: see text] CeB6(112, 211) [Formula: see text] SrB6(112, 211) [Formula: see text] SmB6(112, 211) [Formula: see text] CaB6(112, 211).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Kushkhov, H. B., M. K. Vindizheva, R. A. Mukozheva, A. H. Abazova und M. R. Tlenkopachev. „Electrochemical Synthesis of CeB6 Nanotubes“. Journal of Materials Science and Chemical Engineering 02, Nr. 01 (2014): 57–62. http://dx.doi.org/10.4236/msce.2014.21010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ignatov, M. I., A. V. Bogach, S. V. Demishev, V. V. Glushkov, A. V. Levchenko, Yu B. Paderno, N. Yu Shitsevalova und N. E. Sluchanko. „Anomalous charge transport in CeB6“. Journal of Solid State Chemistry 179, Nr. 9 (September 2006): 2805–8. http://dx.doi.org/10.1016/j.jssc.2006.01.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Demishev, S. V., A. V. Semeno, A. V. Bogach, Yu B. Paderno, N. Yu Shitsevalova und N. E. Sluchanko. „Antiferro-quadrupole resonance in CeB6“. Physica B: Condensed Matter 378-380 (Mai 2006): 602–3. http://dx.doi.org/10.1016/j.physb.2006.01.160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Hart, I., P. Meeson, P. A. Probst und M. Springford. „Magnetostriction of CeCu6 and CeB6“. Physica B: Condensed Matter 199-200 (April 1994): 20–22. http://dx.doi.org/10.1016/0921-4526(94)91723-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Uimin, Gennadi. „Inelastic neutron scattering in CeB6“. Physics Letters A 215, Nr. 1-2 (Mai 1996): 97–102. http://dx.doi.org/10.1016/0375-9601(96)00217-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Ha, Taejun, Young-Su Lee, Joonho Lee und Jae-Hyeok Shim. „Mechanochemical synthesis of CeB6 nanopowder“. Ceramics International 45, Nr. 15 (Oktober 2019): 19442–46. http://dx.doi.org/10.1016/j.ceramint.2019.06.199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lovesey, Stephen W. „X-ray diffraction by CeB6“. Journal of Physics: Condensed Matter 14, Nr. 17 (18.04.2002): 4415–23. http://dx.doi.org/10.1088/0953-8984/14/17/314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Schlottmann, P. „Electron spin resonance in CeB6“. Journal of Applied Physics 113, Nr. 17 (07.05.2013): 17E109. http://dx.doi.org/10.1063/1.4793776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Effantin, J. M., J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii und T. Kasuya. „Magnetic phase diagram of CeB6“. Journal of Magnetism and Magnetic Materials 47-48 (Februar 1985): 145–48. http://dx.doi.org/10.1016/0304-8853(85)90382-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Peng, Ke Wu, Nian Wen Pu, He Li Ma, Ren Chen und Yan Wang. „Mechanical Properties and Microstructure of Boron Carbide-Cerium Boride Composite“. Advanced Materials Research 482-484 (Februar 2012): 1551–55. http://dx.doi.org/10.4028/www.scientific.net/amr.482-484.1551.

Der volle Inhalt der Quelle
Annotation:
The mechanical properties of B4C-CeB6 composite prepared by hot pressed sintering method were tested. The study shows: the hardness of B4C-CeB6 composite increases with the content of cerium boride. When the content of the cerium boride is 4wt%, the hardness reaches its supreme value of 31.98Gpa,its hardness is improved nearly 21.09% compared to monolithic boron carbide. The content of the cerium boride does not affect greatly on flexibility strength. However,it gives much effect on fracture toughness. When the content of the cerium boride is 4wt%, the fracture toughness reaches its supreme value of 5.06MPa.m1/2, which is improved nearly 37.5% compared to monolithic boron carbide materials. The main fracture way of B4C-CeB6 composite is intercrystalline rupture, while the transcrystalline rupture is minor. It appears that this change of fracture mode gives rise to the improvement of the fracture toughness.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kim, Kyung Mo, Eun Hee Lee und Uh Chul Kim. „SCC Inhibitors for SG Tube Materials in Nuclear Power Plants“. Materials Science Forum 534-536 (Januar 2007): 717–20. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.717.

Der volle Inhalt der Quelle
Annotation:
Several chemicals were studied to suppress the damage due to stress corrosion cracking (SCC) of steam generator (SG) tubes in nuclear power plants. The polarization curves showed that the electrochemical properties on the surface of Alloy 600 MA changed with the addition of inhibitors. The SCC tests were conducted by using a m-RUB specimen in a 10% NaOH solution at a temperature of 315°C. The effects on the SCC of the compounds, TiO2, TyzorLA and CeB6, were tested for several types of SG tubing materials. The test with the addition of TiO2 (P25) and CeB6 showed an effect in decreasing the SCC for the SG tubing material. However, CeB6 caused some more SCC for Alloy 800. The penetration property into a crevice of the inhibitors was investigated by using Alloy 600 specimens with different gap sizes and an AES analysis was performed on the oxide layer of the specimen.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Kasuya, Tadao. „Mechanisms of Anomalous NMR in CeB6“. Journal of the Physical Society of Japan 66, Nr. 9 (15.09.1997): 2950–51. http://dx.doi.org/10.1143/jpsj.66.2950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Thalmeier, Peter, Ryousuke Shiina, Hiroyuki Shiba und Osamu Sakai. „Theory of Multipolar Excitations in CeB6“. Journal of the Physical Society of Japan 67, Nr. 7 (15.07.1998): 2363–71. http://dx.doi.org/10.1143/jpsj.67.2363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Martin, M. J., J. Bonde, W. Gekelman und P. Pribyl. „A resistively heated CeB6 emissive probe“. Review of Scientific Instruments 86, Nr. 5 (Mai 2015): 053507. http://dx.doi.org/10.1063/1.4921838.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Ali, Naushad, und S. B. Woods. „Transport properties of Kondo lattice CeB6“. Journal of Applied Physics 57, Nr. 8 (15.04.1985): 3182–84. http://dx.doi.org/10.1063/1.335143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Bogach, A. V., V. V. Glushkov, S. V. Demishev, N. A. Samarin, Yu B. Paderno, A. V. Dukhnenko, N. Yu Shitsevalova und N. E. Sluchanko. „Magnetoresistance and magnetization anomalies in CeB6“. Journal of Solid State Chemistry 179, Nr. 9 (September 2006): 2819–22. http://dx.doi.org/10.1016/j.jssc.2006.01.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kwon, Y. S., S. Kimura, T. Nanba, S. Kunii, M. Ikezawa, T. Suzuki und T. Kasuya. „LOW ENERGY OPTICAL EXCITATION IN CeB6“. Le Journal de Physique Colloques 49, Nr. C8 (Dezember 1988): C8–737—C8–738. http://dx.doi.org/10.1051/jphyscol:19888335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Terzioglu, C., O. Ozturk, A. Kilic, R. G. Goodrich und Z. Fisk. „Magnetic and electronic measurements in CeB6“. Journal of Magnetism and Magnetic Materials 298, Nr. 1 (März 2006): 33–37. http://dx.doi.org/10.1016/j.jmmm.2005.03.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zou, Chun Yun, Yan Ming Zhao und Jun Qi Xu. „Synthesis of single-crystalline CeB6 nanowires“. Journal of Crystal Growth 291, Nr. 1 (Mai 2006): 112–16. http://dx.doi.org/10.1016/j.jcrysgro.2006.02.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Igarashi, Jun-ichi, und Tatsuya Nagao. „Resonant X-Ray Scattering from CeB6“. Journal of the Physical Society of Japan 71, Nr. 7 (15.07.2002): 1771–79. http://dx.doi.org/10.1143/jpsj.71.1771.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Saitoh, Masahiro, Noriko Okada, Eiji Nishibori, Hiroyuki Takagiwa, Tetsuya Yokoo, Masakazu Nishi, Kazuhisa Kakurai et al. „Anomalous Spin Density Distribution in CeB6“. Journal of the Physical Society of Japan 71, Nr. 10 (15.10.2002): 2369–72. http://dx.doi.org/10.1143/jpsj.71.2369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Akgün, Barış, Naci Sevinç, H. Erdem Çamurlu und Yavuz Topkaya. „Mechanochemical and combustion synthesis of CeB6“. International Journal of Materials Research 104, Nr. 4 (11.04.2013): 403–7. http://dx.doi.org/10.3139/146.110868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Peysson, Y., C. Ayache, B. Salce, J. Rossat-Mignod, S. Kunii und T. Kasuya. „Thermal properties of CeB6 and LaB6“. Journal of Magnetism and Magnetic Materials 47-48 (Februar 1985): 63–65. http://dx.doi.org/10.1016/0304-8853(85)90358-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lüthi, B., S. Blumenröder, B. Hillebrands, E. Zirngiebl, G. Güntherodt und K. Winzer. „Elastic and magnetoelastic effects in CeB6“. Journal of Magnetism and Magnetic Materials 47-48 (Februar 1985): 321–22. http://dx.doi.org/10.1016/0304-8853(85)90429-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Peysson, Y., C. Ayache, B. Salce, S. Kunii und T. Kasuya. „Thermal conductivity of CeB6 and LaB6“. Journal of Magnetism and Magnetic Materials 59, Nr. 1-2 (Mai 1986): 33–40. http://dx.doi.org/10.1016/0304-8853(86)90007-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Hanzawa, Katsurou, und Takemi Yamada. „Origin of Anisotropic RKKY Interactions in CeB6“. Journal of the Physical Society of Japan 88, Nr. 12 (15.12.2019): 124710. http://dx.doi.org/10.7566/jpsj.88.124710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Kasuya, Tadao. „Mechanism of Anomalous NMR in CeB6; II“. Journal of the Physical Society of Japan 67, Nr. 4 (15.04.1998): 1494–95. http://dx.doi.org/10.1143/jpsj.67.1494.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Shiina, Ryousuke, Osamu Sakai, Hiroyuki Shiba und Peter Thalmeier. „Interplay of Field-Induced Multipoles in CeB6“. Journal of the Physical Society of Japan 67, Nr. 3 (15.03.1998): 941–49. http://dx.doi.org/10.1143/jpsj.67.941.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hanzawa, Katsurou. „Preference of the Quadrupolar Ordering in CeB6“. Journal of the Physical Society of Japan 69, Nr. 7 (15.07.2000): 2121–30. http://dx.doi.org/10.1143/jpsj.69.2121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Ignatov, M. I., A. V. Bogach, V. V. Glushkov, S. V. Demishev, Yu B. Paderno, N. Yu Shitsevalova und N. E. Sluchanko. „The regimes of charge transport in CeB6“. Physica B: Condensed Matter 378-380 (Mai 2006): 780–81. http://dx.doi.org/10.1016/j.physb.2006.01.284.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

ZHAO, Yanming, Liusheng OUYANG, Chunyun ZOU, Junqi XU, Youzhong DONG und Qinghua FAN. „Field emission from single-crystalline CeB6 nanowires“. Journal of Rare Earths 28, Nr. 3 (Juni 2010): 424–27. http://dx.doi.org/10.1016/s1002-0721(09)60126-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Haworth, C. J., H. Aoki, M. Takashita, T. Terashima, T. Matsumoto, N. Sato und S. Kunii. „The Fermi surface of CeB6 under pressure“. Journal of Magnetism and Magnetic Materials 177-181 (Januar 1998): 369–70. http://dx.doi.org/10.1016/s0304-8853(97)00978-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Ōnuki, Y., T. Komatsubara, P. H. P. Reinders und M. Springford. „De Haas-Van Alphen effect in CeB6“. Physica B: Condensed Matter 163, Nr. 1-3 (April 1990): 100–102. http://dx.doi.org/10.1016/0921-4526(90)90137-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Feyerherm, R., A. Amato, F. N. Gygax, A. Schenck, Y. Ōnuki und N. Sato. „Problems of the magnetic structure of CeB6“. Journal of Magnetism and Magnetic Materials 140-144 (Februar 1995): 1175–76. http://dx.doi.org/10.1016/0304-8853(94)01281-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Givord, F., J.-X. Boucherle, P. Burlet, B. Gillon und S. Kunii. „Non-anomalous magnetization density distribution in CeB6“. Journal of Physics: Condensed Matter 15, Nr. 19 (07.05.2003): 3095–106. http://dx.doi.org/10.1088/0953-8984/15/19/311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Magishi, Ko-ichi, Masayuki Kawakami, Takahito Saito, Kuniyuki Koyama, Kiyoshi Mizuno und Satoru Kunii. „NMR in the antiferromagnetic phases of CeB6“. Physica B: Condensed Matter 281-282 (Juni 2000): 548–49. http://dx.doi.org/10.1016/s0921-4526(99)01070-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie