Auswahl der wissenschaftlichen Literatur zum Thema „Central heating system“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Central heating system" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Central heating system"

1

Mendi, Faruk, Kurtulus Boran und Mustafa Kemal Kulekci. „Fuzzy controlled central heating system“. International Journal of Energy Research 26, Nr. 15 (2002): 1313–22. http://dx.doi.org/10.1002/er.819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pawlita, Monika. „Efficient central heating and modern heat sources“. Medical Science Pulse 7, Nr. 4 (31.12.2013): 28–33. http://dx.doi.org/10.5604/01.3001.0003.3148.

Der volle Inhalt der Quelle
Annotation:
Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Hua, Bing Hong Yan, Chunhua Sun und Guo Qiang Xia. „Study on the Behavior Energy-Saving of the Heat Users of Central Heating System“. Advanced Materials Research 608-609 (Dezember 2012): 1194–97. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.1194.

Der volle Inhalt der Quelle
Annotation:
As one of the effective ways of building energy saving, behavior energy-saving has the positive promotion function regarding the heating energy saving for the heat users of central heating system. The effect of behavior energy-saving on the heating load characteristics of central heating systems was studied based on the present development of central heating metering technology. The study was promoted combined the theoretical analysis and questionnaire survey. At first, the influence factors of behavior energy-saving were analyzed. Then the questionnaire survey about the present situation of behavior energy-saving was carried out and the basic heating modes of heat users were summarized considering on heating mode, habits and customs and the family structure characteristics. The concept and mainly form of behavior energy-saving and behavior energy-saving rate of central heating system heat users were clear and definitude by study on the behavior energy-saving rate. Thus it has good coaching and promoting effect on the development of behavior energy-saving.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Cao, Min. „Architecture and application of intelligent heating network system based on cloud computing platform“. Thermal Science 25, Nr. 4 Part B (2021): 2889–96. http://dx.doi.org/10.2298/tsci2104889c.

Der volle Inhalt der Quelle
Annotation:
The vigorous development of Internet-related technologies such as big data, the IoT, and cloud computing has brought intelligent central heating networks? intelligent upgrade opportunities. The article discusses the current situation of the urban central heating system and its intelligence and analyzes the new characteristics of the intelligent central heating network under the new situation. Because of the existing central heating system?s existing problems, we have designed a complete set of sys?tem architecture and heating networks? application plans.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lou, Guo Huan, und Yang Yin. „Research and Realization of Remote Monitoring System for Central Heating“. Applied Mechanics and Materials 427-429 (September 2013): 961–64. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.961.

Der volle Inhalt der Quelle
Annotation:
In view of the central heating problems for remote, a realization scheme of remote monitoring system for central heating is presented. In this paper, the composition and functions of the heat supply network monitoring center, the heating station monitoring and control system and the wireless communication system are introduced, the control system hardware configuration is discussed. The system has already been used and run in a good effect.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kim, Myo Sun, Youngil Kim und Kwang-Seop Chung. „Improvement of intermittent central heating system of university building“. Energy and Buildings 42, Nr. 1 (Januar 2010): 83–89. http://dx.doi.org/10.1016/j.enbuild.2009.07.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cui, Ming Hui, Xin Wang und Ji Liang Liu. „The Analysis of Plate Heat Exchanger in Central Heating Regulation of Indirect Connection Hot Water Heating System“. Applied Mechanics and Materials 584-586 (Juli 2014): 728–31. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.728.

Der volle Inhalt der Quelle
Annotation:
Plate heat exchanger with unique advantages become dominant heat exchange equipment in heating engineering. But there is no heating regulation formula of plate exchanger applying in indirect connection hot water heating central heating regulation. This paper analysis the condition that the heating user’s system adopts quality regulation method and the hot water network system adopts quality-flow regulation method, obtain the regulation formulas of plate exchanger applying in indirect connection hot water heating central heating regulation, provides reliable theory basis on the operation regulation, energy –saving testing, etc. for indirect connection central heating system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Zhang, Su Ying, Xue Lian Qi, Xiao Xue Zhao und Hui An. „The Research of Heating System Based on Generalized Predictive Control“. Advanced Materials Research 588-589 (November 2012): 1454–57. http://dx.doi.org/10.4028/www.scientific.net/amr.588-589.1454.

Der volle Inhalt der Quelle
Annotation:
Central heating in some of the cities in northern China has become the main way of heating in winter. In order to save energy, reduce home heating costs and improve comfort by controlling the room temperature, it is necessary to study the central heating, to increase the degree of automation of the heating system. In this paper, a mathematical model of heating system is presented. The generalized predictive control system for heating system is developed. Then Matlab was used to simulate the method. The simulation result shown that the generalized predictive control has made very good control effect on the type of this kind of model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Blagodarnyy, Nikolay, und Anton Hvostov. „CONTROL SYSTEM OF THE CENTRAL HEATING POINT AND RESEARCH OF ITS OPERABILITY“. Modern Technologies and Scientific and Technological Progress 2020, Nr. 1 (16.06.2020): 101–2. http://dx.doi.org/10.36629/2686-9896-2020-1-101-102.

Der volle Inhalt der Quelle
Annotation:
The main tasks of regulating the water pressure and temperature of the heating and hot water supply circuits of the Central heating point are described. A mathematical model of the Central heating point is constructed, and a control system is implemented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wang, Yue Ren, Yu Feng Jiang und Min Yu. „The Matching Research of Soil Source Heat Pump and Central Heating System in Cold Region“. Advanced Materials Research 805-806 (September 2013): 486–91. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.486.

Der volle Inhalt der Quelle
Annotation:
Using Dest software simulation benchmark building the dynamic heat load, analyzing its distribution pattern, at the same timewe can also get heat pump units in the COP value is different under different working condition, then the soil source heat pump and central heating complementary heating system, undertake in soil source heat pump system design heat load, under theconditions of different proportion of the whole system operation energy consumption, initial investment analysis, we conclude thatthe soil source heat pump and central heating complementary heating systems of different energy matching optimization features,this provides a reference for practical engineering.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Central heating system"

1

Embaye, Mebrahtu. „Enhancement of panel radiator based hydronic central heating system using flow pulsation“. Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6856/.

Der volle Inhalt der Quelle
Annotation:
Enhancing the heat output of the hydronic central heating system in buildings can play a major role in reducing energy consumption and CO2 emission. The main aim of this PhD research is to investigate the effect of pulsed flow input on the energy consumption of panel radiators in hydronic central heating systems and the user indoor comfort defined by ASHRAE standard 55 and EN ISO 7730. The research covers thermal performance of panel radiator and the indoor comfort. The work was performed using dynamic control modelling, CFD and experimental testing to prove the concept. Results from the mathematical and CFD modelling of the hydronic radiator with pulsed flow using various frequencies and amplitudes showed that 20% to 27% of energy saving can be achieved compared to the constant flow while maintaining the same radiator target surface temperature of 50oC as recommended by the BS EN442. The indoor comfort results were also achieved as recommended by international standards including CO2 concentration at 1000PPM±50PPM, relative humidity at 50±9%, comfort temperature at 20±1.6oC, air velocity of below 0.15m/s and draught risk parameters of less than 15%. The numerical results agreed well with experimental results with maximum deviation of radiator temperature output of ±4.1%, indoor temperature ±2.83% and energy saving of ±1.7%. The energy saved due to the pulsed flow is attributed to the enhancement of the radiator heat transfer performance that leads to higher heat output at lower average mass flow rate of the hot water.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Medina, Jean Pierre, und Zjikar Abdulla. „Värmeåtervinning ur ventilationsluft i äldre flerbostadshus : En jämförande studie av centralt FTX- och FX system“. Thesis, KTH, Byggteknik och design, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-127004.

Der volle Inhalt der Quelle
Annotation:
En jämförelsestudie har genomförts mellan två värmesystem. Analysen har genomförts med ett flerbostadshus som referensfasighet. Fastigheten är lokaliserad i Södertälje kommun. Analysen går ut på att bestämma vilket värmesystem som är fördelaktigt vid renovering av äldre flerbostadshus med avseende på energi och kostnad. De systemen som har behandlats är ett centralt värmesystem med motströmsvärmeväxlare och ett centralt värmesystem med frånluftsvärmepump. Det centrala värmesystemet (Eq aggregat) är ett centralt från- och tilluftssystem med återvinning (FTX system). Systemet använder en motströmsvärmeväxlare för överföring av värmeenergi mellan från- och tilluften. Det centrala värmesystemet (Energi well) är ett frånluftssystem (FX system) med en ny teknisk lösning. Systemet återvinner värme ur frånluften med hjälp av kondenserande frånluftsvärmpumpar. Värmepumparna finns i en frånluftskammare på vindsvåningen. Den återvunna värmen förs sedan vidare till undercentralen för att värma upp varmvattnet. Analysen har genomförts med hjälp av teoretiska energi- och kostnadsberäkningar, intervjuer och faktainsamlingar.  Energiberäkningarna har bestått av en energibalansberäkning för att få fram den köpta energiförbrukningen. Kostnadsberäkningar har bestått av en livscykelkostnads kalkyl och en kostnads beräkning per producerad värmeenergi. De resulterande värdena för båda värmesystemen har sedan jämförts med varandra. Resultatet visade att värmesystemet Energy well var mest fördelaktig ur både energi och kostnad perspektiv. Den årliga köpta energiförbrukningen var                          lägre än värmesystemet (Eq aggregat) med en motströmsvärmeväxlare. Driftkostnaden var  lägre än Eq aggregat, installations-kostnaderna var  lägre än Eq aggregat och slutlig var livscykelkostnaden  lägre än värme-systemet (Eq aggregat) med motströmsvärmeväxlare. Men underhållskostnaden var  högre än värmesystemet Eq aggregat. Slutsatserna för de teoretiska undersökningarna gav bättre värden för värmesystemet Energy well. Vilket innebär att Energy well är mest fördelaktig utifrån energi- och kostnads perspektiv. Däremot ger värmesystemet med motströmsvärmeväxlare en lägre risk att ett driftfel inträffar i verkligheten.
A comparing study between two different heating systems has been accomplished. The analysis has been conducted with an apartments building as a reference project. The building is located in the municipality of Södertälje. The goal of the analysis is to determine which of the heating system is beneficial for older apartment buildings in terms of energy and cost. The systems that have been treated are a central heating system with a counterflow heat exchanger and a central heating system with an exhaust air heat pump. The central heating system (Eq unit) is a central exhaust- and supply air system with heat recovery. The system uses a counterflow heat exchanger to transfer the heat energy between the exhaust- and supply air. The central heating system (Energy well) is the latest technical solution of a central exhaust air system. The system recovers heat from exhaust air by condensing exhaust air heat pumps. The heat pumps are in an exhaust air chamber and it´s placed on the attic floor. The recovered heat energy sends then to the mechanical room to heat up the water system. The analysis has been accomplished by using theoretical energy- and cost calculations, interviews and data collection. The energy calculations are based on an energy balance equation to determine the bought energy consumption. The cost calculation is based on a life cycle cost equation and a cost equation per produced heat energy. The results of both heating systems have been compared with each other. The results showed that the heating system Energy well was most beneficial in both energy and cost perspective. The annual consumption of bought energy was                          lower each year than the heating system (Eq unit) with a counterflow heat exchanger. The operating costs of the system were  lower than Eq unit, the installation costs were  lower than Eq unit and final was the life cycle cost  less than the heating system (Eq unit) with counterflow heat exchanger. But the service cost was  higher than the heating system Eq unit. The conclusion of the theoretical investigations gave better values ​​for the heating system Energy well. This means than Energy well is most beneficial from the energy and cost perspectives. Contrariwise has the heating system with counterflow heat exchanger a lower risk of an operational failure to occur in reality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Plavec, Kamil. „Polyfunkční dům, Jihlava“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-225774.

Der volle Inhalt der Quelle
Annotation:
Proposed office and apartment building is situated in the north-west area of the city of Jihlava. Office and apartment building is designed as four-storey detached house, flat roof with a single casing. There are three shops and common area in the 1st floor. In the second floor there are situated 4 apartments consisting of two rooms and a house cellar in the centre of the house. The third floor is of the same pattern as the second one. In the fourth floor there are 4 apartments consisting either of one room or three rooms and a house cellar in the centre of the house as well. The total number of the apartments is 12. The house is made of building system VELOX.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Horák, Jiří. „Návrh vytápění budovy s uplatněním procesu informačního modelování“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2016. http://www.nusl.cz/ntk/nusl-240003.

Der volle Inhalt der Quelle
Annotation:
This thesis processes heating of the apartment house in Rožnov pod Radhoštěm, Vsetín district. Revit program was used for the design of the heating. Some calculations were made in Revit too. Then the correctness of the calculations was checked. The Revit families were made in this thesis. These families support the calculations and design automation. Then these procedures were applied to the apartment house. It is five floors building with 1012 m2 of built area. Thesis solves design of heating and technical room equipment. The technical room is placed in first floor. Heat supply is solved as central heat supply system. The ventilation is mechanical, equal pressure. Thesis is in – cooperation with the house planner and the air – conditioning system design.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Fsadni, Andrew M. „The fundamentals of two-phase flow in wet domestic central heating systems“. Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/6953.

Der volle Inhalt der Quelle
Annotation:
An emerging trend in the building services industry is the installation of passive deaerators on the flow line of domestic wet central heating systems. To date, no data and theoretical models predicting the two-phase flow characteristics in domestic wet central heating systems are available in the open literature. This gap in literature has prevented essential design improvements to passive deaerators thus impeding the efficiency enhancement of such devices. Hence, the current study is aimed at assisting designers of deaeration devices by providing fundamental data and model correlations with respect to the two-phase flow characteristics typical in a wet domestic central heating system. For this purpose an experimental research project was adopted and several studies were carried out, including; (1) a comprehensive review to understand the background of the phenomena, (2) the design and construction of an experimental test rig to conduct the necessary investigations into the phenomenon of two-phase flow in domestic wet central heating systems, (3) the development of a reliable image capture and analysis technique, (4) the completion of a number of experiments to investigate typical bubble sizes, volumetric void fractions, bubble distributions and nucleation and dissolution rates and (5) the correlation of the data gathered as part of the present study with existing bubble size, nucleation and dissolution prediction models. This research has, for the first time, provided an in depth analysis into two-phase flow characteristics in wet domestic central heating systems through the use of a high speed camera and image analysis techniques. The two-phase phenomenon finds its origins in high dissolved gas concentrations present in the water flowing through the closed loop system, thus resulting in super saturation conditions at the primary heat exchange wall conditions. Bubble sizes at the boiler flow line were found to be dependent on the bulk fluid velocity, heat flux and pressure, with a measured mean diameter in the range of 0.13 mm to 0.39 mm. The Winterton (1972a) force balance model for bubble size prediction was in reasonable agreement with the experimental results. This model was further improved through the correlation of our data with the inclusion of dimensionless groups. Bubble nucleation rates have been calculated in the range of 0.3 to 4 bubbles / cm2 s with total system bubble production rates measured in the range of 784 to 6920 bubbles per second. Bubble nucleation rates have been calculated through the consideration of the heat exchanger surface under super saturation conditions. A correlation for the model by Hepworth et al. (2003) for nonclassical heterogeneous nucleation is proposed based on the experimental data gathered during the present study. Experimental results have shown dissolution rates for the bubble size ratio in the range of 0.4 to 12 % per second with system conditions. A modification of the model developed by Epstein and Plesset (1950) for stationary bubble dissolution is proposed with the inclusion of the Sherwood number to capture the effects of turbulent diffusion. The volumetric void fraction distribution in vertical pipes was found to be quasi-homogenous across the pipe section while being strongly dependent on gravitational and turbulence effects in horizontal pipe bubbly flow. A CFD simulation predicted the volumetric void fraction distribution with reasonable accuracy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Šoc, Matěj. „Systém pro automatické řízení a monitorování centrálního vytápění“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-399195.

Der volle Inhalt der Quelle
Annotation:
This thesis deals with design and implementation of wireless system for automated control and monitoring of central heating. Some of the existing solutions and their characteristics are briefly introduced at first. The attention in this thesis is subsequently given to the analysis of wireless technologies and power supply methods suitable for home automation. With regard to ascertained findings, the design and subsequent implementation of system modules using Raspberry Pi, the ARM Cortex-M0+ microcontroller and the ZigBee communication modules were performed. The firmware for created modules was designed and implemented. The designed system can be controlled and monitored using a mobile application for the Android platform, whose design is also described in this thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Shefik, Ali. „Investigation of two-phase flow structures in the pipework of wet central heating systems“. Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13111.

Der volle Inhalt der Quelle
Annotation:
Wet central heating systems account for a very large portion of energy consumption in the UK and recent figures indicate that its usage in households will be increasing even further. Under such circumstances, it is desirable to use these systems in the most efficient way possible. However, dissolved gases that penetrate into central heating systems are later released as bubbles due to local supersaturated conditions occurring on the primary heat exchanger wall of the boiler. This leads to a two-phase flow throughout the pipework, causing microbubbles to escape to the upper parts of the system and creating cold spots in the radiators, thus, reducing its efficiency. There is an increasing trend in building services to install devices that remove these unwanted gases. Therefore, investigation of two-phase structures throughout different pipe installations will facilitate companies in enhancing their deaerator designs. In this regard, extensive experimental and computational investigations of two-phase flow structures were conducted within this study. Two-phase flow structures were measured by a photographic technique and investigated in means of void fractions, bubble sizes, and velocities. Fluid velocities in the range of 0.5 to 1.1 m/s at typical wet central heating temperature (60 to 80 °C) and pressures (2.2 to 27 bar) were utilized. Results show that that bubble production increases as temperature, boiler heating load, and saturation ratio escalate. On the other hand, it reduces when the pressure and flow rate of the system gets higher. A clear relationship between bubble sizes and system parameters was non-existent, except for the system flow rate (where bubble diameters decrease as the flow rate increases). Moreover, bubbles were evenly distributed during vertical flow when compared to horizontal flow, where bubbles tend to flow at the upper parts of the pipe. Furthermore, it was shown that bubble distributions were highly affected by obstacles like the 90 degree bend, thermocouple or pressure sensors. In addition, it was observed that axial flow development of bubbly flow was a continuous process and void fraction at the upper part of the pipe increased as the flow travelled through horizontal pipeline. Regarding the bubble velocity measurements, it was concluded that, bubble velocity profiles show development along both vertical and horizontal flows and approach to profiles which can be expressed with the power-law. Moreover, coalescence of two bubbles during horizontal flow was captured, emphasizing that the effect of coalescences should not be neglected at low void fractions. It was also found that bubbly flow in central heating systems was in a coalescences dominant regime and maximum bubble diameter observed at most positions were higher than theoretically defined values. Moreover, bubble dissolution effect was not observed at any of the test rig conditions. The reasons were thought to be the variation saturation ratio and axial flow development of two-phase flow, which supress the effect of dissolution and favour coalescence phenomenon. Finally, after evaluating conclusions from the experimental results and computational study regarding the effect of the 90 degree bend on void fraction distributions, it was concluded that the employed physical model and solver settings in ANSYS Fluent 14.5, can be utilized to predict bubble distribution developments throughout the central heating systems’ pipework. Keywords: Central heating systems, two-phase flow, bubbly flow, bubble distributions, bubble sizes, bubble velocities, coalescence, image processing, experimental fluid easurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Najbrtová, Zuzana. „Dodávka energie pro skleníkovou produkci“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443195.

Der volle Inhalt der Quelle
Annotation:
The import of the vegetable has prevailed in the long run over the own production. In connection with this reality and increasing demand for the food with higher quality the production greenhouse is more often built. The providing heat, cold and electricity for the year-round operation is related to the construction and working of these objects. The theoretical part of this theses describes possible ways how to cover energy consumption for the model greenhouse in Kožichovice, Třebíč region. The heat losses and the year-round heat consumption were stated for the selected model and compared with the exact values from Kožichovice. The following method of energy supply was selected based on the calculated energy consumption - the separate cogeneration unit, cooperation of several cogeneration units, a biogas station, a heat pump and central heating system. These methods of energy supply were subjected to technical and economical comparison.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Užgrindis, Tautvydas. „Biurų centras "Royal" Šiauliuose“. Bachelor's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130618_135620-10482.

Der volle Inhalt der Quelle
Annotation:
Baigiamajame darbe projektuojamas Biurų centras „Royal“ dviejų aukštų su požemine automobilių stovėjimo aikštele, kurio bendras plotas – 1257,8 m2. Objekte planuojama vykdyti įvairias administracines paslaugas, tai būtų kalbų biuras, vairavimo mokykla, renginių organizavimo agentūra. Biurų centras projektuojamas iš fibo blokelių mūro apšiltinant jį putu polistirolu, perdangos plokštės, rygeliai ir gelžbetonio sijos bus atremiamos i sumontuotas 400x400 kolonas. Pastate bus dveji liftai, taip pat įrengti tualetai pritaikyti neįgaliesiams. Pastatas šildomas su dujiniu katilu. Projektuojamo pastato statybos sklypas yra Pramonės gatvėje Šiauliuose. Jo plotas - 1544 m2. Sklypas yra patogioje miesto dalyje, kur dideli žmonių srautai, šalia yra viešojo transporto sustojimo vieta.
In this final work is designed two-stores with underground parking for cars office center „Royal“ with an area of 1257,8 m2. The facility is planned to carry out a variety of administrative services, be it linguistic office, driving school, event marketing agency. Office center is designed with fibo blocks masonry with insulation of polystyrene, floor slabs, beams and reinforced concrete beams will be brought to 400x400 assembled columns. The building will be two lifts, as well as toilets adapted to people with disable. The building is heated with a gas boiler. Projected building plot is in Pramonės Street in Siauliai. Its area of - 1544 m2. The plot is conveniently located where are the large flow of people, close to public transport stopping place.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tanton, D. M. „Some aspects of the use of water-filled heat stores in gas-fired central-heating systems“. Thesis, Cranfield University, 1986. http://hdl.handle.net/1826/4186.

Der volle Inhalt der Quelle
Annotation:
Water-filled heat stores present a convenient, relatively inexpensive means of optimising the use of diminishing gas stocks for the central-heating of buildings. The British Gas Corporation recently launched a series of central-heating units with storage, for use in the domestic sector, whose benefits include: - reduced boiler size, more efficient boiler operation, load-levelling at the hours of peak gas demand. This thesis is divided into three parts. Part I examines the inherent advantage of a with-storage, domestic, central-heating system over a conventional system, by means of two simple computer-simulation programs. A minimum efficiency advantage of about 5% is anticipated; the variation of this advantage with the values of certain key parameters has been assessed. Part II is an interim report of a full-scale field trial in the commercial sector; a large (3.3m3) store was fitted in the heating system of a London school, and its performance during the first weeks of its operation is presented here. Returning to the domestic sector, Part III presents a study of the use of two integral heat exchangers in the storage vessels of the above domestic units, whereby hot water can be drawn instantaneously. An attempt to optimise this domestic hot-water facility has been made.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Central heating system"

1

Hunkin, Tim. The secret life of the vacuum cleaner, sewing machine, central heating system, washing machine, refrigerator, television set. [S.l.]: [s.n.], 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

S, Abacus Consultants P. Technical assistance study of steam distribution system chiller plant optimization VAV conversions for Central Washington University, Ellensburg, Washington 98926. Seattle, Wash: Abacus Consultants, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ray, Ward, Hrsg. Domestic central heating wiring systems and controls. 2. Aufl. Oxford: Newnes, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Carlo, Piemonte, und Szëgo Edoardo, Hrsg. Planning of geothermal district heating systems. Dordrecht: Kluwer Academic, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Statens råd för byggnadsforskning (Sweden), Hrsg. Opportunities for group central heating systems in Canada. Stockholm, Sweden: Swedish Council for Building Research, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Valdimarsson, Páll. Modelling of geothermal district heating systems. Háskólaútgáfan: Háskóli Islands, University of Iceland, Faculty of Engineering, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Phetteplace, Gary E. Efficiency of steam and hot water heat distribution systems. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Phetteplace, Gary E. Optimal design of piping systems for district heating. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ward, Ray. Installing and servicing domestic central heating wiring systems and controls. Oxford: Newnes, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fang, J. B. A computer program for calculating heat loss from underground heat distribution systems. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Central heating system"

1

Simakova, Yulia S., und Liubov V. Leonova. „Biocorrosion in the Central Heating System“. In Lecture Notes in Earth System Sciences, 657–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21614-6_35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guo, Yali, Zuguo Liu, Zhaoxian Hong, Dabin Zhang, Yang Cao und Feng Wang. „An experimental study on the biomass central heating intelligent tobacco-curing system“. In Advances in Energy Science and Equipment Engineering II, 1283–89. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315116174-83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Czemplik, Anna. „Simple Models of Central Heating System with Heat Exchangers in the Quasi-static Conditions“. In Computer Aided Systems Theory – EUROCAST 2015, 597–604. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27340-2_74.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Haines, Roger W., und Douglas C. Hittle. „Central Plant Pumping and Distribution Systems“. In Control Systems for Heating, Ventilating, and Air Conditioning, 255–64. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3108-1_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Haines, Roger W. „Central Plant Pumping and Distribution Systems“. In Control Systems for Heating, Ventilating and Air Conditioning, 273–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6593-8_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yu, Shuhao, Fei Guo, Maosheng Fu und Huali Xu. „An Intelligent Heating Device Using Central Heating Technique for Northern China Family“. In Advances in Intelligent Systems and Computing, 62–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65978-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kołek, Krzysztof. „Central Heating Energy Saving Strategies for a Public Building“. In Advances in Intelligent Systems and Computing, 264–74. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50936-1_23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gallo, Emmanuelle. „Two Early Examples of Central Heating Systems in France During the 19th Century“. In Addressing the Climate in Modern Age's Construction History, 83–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04465-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Steele, George. „The basic heating system“. In Central Heating, 33–40. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-408-01404-5.50009-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Steele, George. „The design of a heating system“. In Central Heating, 83–93. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-408-01404-5.50015-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Central heating system"

1

Guohuan, Lou, und Gao Xianjie. „Application of WebGIS in Central Heating Monitoring System“. In 2010 International Conference on Challenges in Environmental Science and Computer Engineering. IEEE, 2010. http://dx.doi.org/10.1109/cesce.2010.203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gołębiowska, Justyna, Agnieszka Żelazna und Zbigniew Suchorab. „Thermoelectric cooling and heating system of increased efficiency“. In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, J., und Y. Xue. „Design of a monitoring system for the heating network of central heating“. In International Conference on Computer Science and Systems Engineering. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/csse140731.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Yuanfang Zhang, Jiang Liu und Wenyi Xu. „Design and implementation of central heating data warehouse system“. In 2013 IEEE 4th International Conference on Software Engineering and Service Science (ICSESS). IEEE, 2013. http://dx.doi.org/10.1109/icsess.2013.6615325.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Iacob, Mihai, Gheorghe-Danie Andreescu und Nicolae Muntean. „SCADA system for a central heating and power plant“. In 2009 5th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE, 2009. http://dx.doi.org/10.1109/saci.2009.5136232.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Teng, Qiang, und Wenhuan Wang. „The optimization and management research for central heating system“. In 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). IEEE, 2014. http://dx.doi.org/10.1109/wartia.2014.6976224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ramm, Tobias, Mathias Ehrenwirth und Tobias Schrag. „Modelling of the Central Heating Station within a District Heating System with Variable Temperatures“. In The 13th International Modelica Conference, Regensburg, Germany, March 4–6, 2019. Linköing University Electronic Press, 2019. http://dx.doi.org/10.3384/ecp19157567.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Xiong, Xisen, und Guohuan Lou. „Research and Application of Remote Monitoring System for Central Heating“. In 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2012. http://dx.doi.org/10.1109/cdciem.2012.133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

SAMESHIMA, TOSHIYUKI, T. Kikuchi, T. Uehara, T. Arima, M. Hasumi, T. Miyazaki, G. Kobayashi und I. Serizawa3. „MICROWAVE RAPID HEATING SYSTEM USING CARBON HEATING TUBE“. In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9756.

Der volle Inhalt der Quelle
Annotation:
We report a microwave heating system with a carbon heating tube (CHT) made by a 4-mm diameter quartz tube filled carbon particles and Ar gas at 1400 Pa. 2.45-GHz microwave at 200 W was introduced to a 300-dimameter metal cavity, in which 60-mm-long CHT was set at the central position. The numerical simulation with a finite element moment method resulted in the standing wave of the electric field caused by three dimensional Fresnel interference effect with low high electric field intensity ranging from from 1 to 6 kV/m because of effective absorption of microwave power by the CHT. The lowest average electrical field intensity of 5 kV/m in the cavity space was given by the electrical conductivity of carbon ranging from 10 to 55 S/m. The CHT with 55 S/m heated to 1200oC by microwave irradiation at 200 W. This heating method was applied to activate 1.0x1015-cm-2 boron and phosphorus implanted regions in n-type crystalline silicon substrate to fabricate pn junction and solar cells. The CHT heating at 1200oC realized decrease in the sheet resistivity to 146 Ω/sq, decrease in the density of defect states to 1.3x1011 and 9.2x1010 cm-2 for boron (p+) and phosphorus (n+) implanted surfaces, and solar cell characteristic with a conversion efficiency of 15% under illumination of air mass 1.5 at 0.1 W/cm2.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Andersen, P., T. S. Pedersen, J. Stoustrup, J. Svensen, B. Lovmand und N. Bidstrup. „Elimination of oscillations in a central heating system using pump control“. In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878790.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Central heating system"

1

Widder, Sarah H., Cheryn E. Metzger, Joseph M. Petersen und Joshua A. McIntosh. Interaction between Heat Pump Water Heaters or Other Internal Point Source Loads and a Central Heating System. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1485308.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie