Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ceramic electrolytes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ceramic electrolytes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ceramic electrolytes"
Kee, Robert J., Huayang Zhu, Sandrine Ricote und Greg Jackson. „(Invited) Mixed Conduction in Ceramic Electrolytes For Intermediate-Temperature Fuel Cells and Electrolyzers“. ECS Meeting Abstracts MA2023-02, Nr. 46 (22.12.2023): 2216. http://dx.doi.org/10.1149/ma2023-02462216mtgabs.
Der volle Inhalt der QuelleHe, Binlang, Shenglin Kang, Xuetong Zhao, Jiexin Zhang, Xilin Wang, Yang Yang, Lijun Yang und Ruijin Liao. „Cold Sintering of Li6.4La3Zr1.4Ta0.6O12/PEO Composite Solid Electrolytes“. Molecules 27, Nr. 19 (10.10.2022): 6756. http://dx.doi.org/10.3390/molecules27196756.
Der volle Inhalt der QuelleTronstad, Zachary, und Bryan D. McCloskey. „Ion Conductive High Li+ Transference Number Polymer Composites for Solid-State Batteries“. ECS Meeting Abstracts MA2024-01, Nr. 5 (09.08.2024): 751. http://dx.doi.org/10.1149/ma2024-015751mtgabs.
Der volle Inhalt der QuelleLee, Jong-Ho, Junseok Kim, Sihyuk Choi, HO-IL JI, Deok-Hwang Kwon, Sungeun Yang, Kyung Joong Yoon und Ji-Won Son. „Enhanced Sintering of Refractory Protonic Ceramic Electrolyte by Dual Phase Reaction“. ECS Meeting Abstracts MA2024-02, Nr. 48 (22.11.2024): 3380. https://doi.org/10.1149/ma2024-02483380mtgabs.
Der volle Inhalt der QuelleLuo, Jiajia, Yang Zhong und Guohua Chen. „Preparation, Microstructure and Electrical Conductivity of LATP/LB Glass Ceramic Solid Electrolytes“. Journal of Physics: Conference Series 2101, Nr. 1 (01.11.2021): 012081. http://dx.doi.org/10.1088/1742-6596/2101/1/012081.
Der volle Inhalt der QuelleFincher, Cole D., Colin Gilgenbach, Christian Roach, Rachel Osmundsen, Brian W. Sheldon, W. Craig Carter, James LeBeau und Yet-Ming Chiang. „Electrochemical Embrittlement Accelerates Dendrite Growth in Ceramic Electrolytes“. ECS Meeting Abstracts MA2024-01, Nr. 38 (09.08.2024): 2300. http://dx.doi.org/10.1149/ma2024-01382300mtgabs.
Der volle Inhalt der QuelleChen, Xi. „(Invited) Ion Transport and Interface Resistance in Polymer-Based Composite Electrolytes and Composite Cathode“. ECS Meeting Abstracts MA2023-01, Nr. 6 (28.08.2023): 983. http://dx.doi.org/10.1149/ma2023-016983mtgabs.
Der volle Inhalt der QuelleThangadurai, Venkataraman. „(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 47 (09.10.2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Der volle Inhalt der QuelleSahore, Ritu, Beth L. Armstrong, Changhao Liu und Xi Chen. „A Three-Dimensionally Interconnected Composite Polymer Electrolyte for Solid-State Batteries“. ECS Meeting Abstracts MA2022-02, Nr. 4 (09.10.2022): 378. http://dx.doi.org/10.1149/ma2022-024378mtgabs.
Der volle Inhalt der QuelleRanque, Pierre, Jakub Zagórski, Grazia Accardo, Ander Orue Mendizabal, Juan Miguel López del Amo, Nicola Boaretto, Maria Martinez-Ibañez et al. „Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO“. Inorganics 10, Nr. 6 (13.06.2022): 81. http://dx.doi.org/10.3390/inorganics10060081.
Der volle Inhalt der QuelleDissertationen zum Thema "Ceramic electrolytes"
Soares, Helena Sofia Marques Pinto. „Electrolytes for ceramic oxide fuel cells“. Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15883.
Der volle Inhalt der QuelleThe main objective of this dissertation is the development and processing of novel ionic conducting ceramic materials for use as electrolytes in proton or oxide-ion conducting solid oxide fuel cells. The research aims to develop new processing routes and/or materials offering superior electrochemical behavior, based on nanometric ceramic oxide powders prepared by mechanochemical processes. Protonic ceramic fuel cells (PCFCs) require electrolyte materials with high proton conductivity at intermediate temperatures, 500-700ºC, such as reported for perovskite zirconate oxides containing alkaline earth metal cations. In the current work, BaZrO3 containing 15 mol% of Y (BZY) was chosen as the base material for further study. Despite offering high bulk proton conductivity the widespread application of this material is limited by its poor sinterability and grain growth. Thus, minor additions of oxides of zinc, phosphorous and boron were studied as possible sintering additives. The introduction of ZnO can produce substantially enhanced densification, compared to the un-doped material, lowering the sintering temperature from 1600ºC to 1300ºC. Thus, the current work discusses the best solid solution mechanism to accommodate this sintering additive. Maximum proton conductivity was shown to be obtained in materials where the Zn additive is intentionally adopted into the base perovskite composition. P2O5 additions were shown to be less effective as a sintering additive. The presence of P2O5 was shown to impair grain growth, despite improving densification of BZY for intermediate concentrations in the range 4 – 8 mol%. Interreaction of BZY with P was also shown to have a highly detrimental effect on its electrical transport properties, decreasing both bulk and grain boundary conductivities. The densification behavior of H3BO3 added BaZrO3 (BZO) shows boron to be a very effective sintering aid. Nonetheless, in the yttrium containing analogue, BaZr0.85Y0.15O3- (BZY) the densification behavior with boron additives was shown to be less successful, yielding impaired levels of densification compared to the plain BZY. This phenomenon was shown to be related to the undesirable formation of barium borate compositions of high melting temperatures. In the last section of the work, the emerging oxide-ion conducting materials, (Ba,Sr)GeO3 doped with K, were studied. Work assessed if these materials could be formed by mechanochemical process and the role of the ionic radius of the alkaline earth metal cation on the crystallographic structure, compositional homogeneity and ionic transport. An abrupt jump in oxide-ion conductivity was shown on increasing operation temperature in both the Sr and Ba analogues.
O principal objetivo deste trabalho é o desenvolvimento e processamento de novos materiais cerâmicos protónicos e iónicos para utilizar como eletrólito das células de combustível de óxidos sólidos (PCFCs e SOFCs, respetivamente). Com este estudo pretende-se, então, desenvolver novas formas de processamento e/ou materiais que apresentem características eletroquímicas atrativas, à base de óxidos cerâmicos nanométricos de pós preparados por processos mecanoquímicos. Existem alguns requisitos que devem ser tidos em conta de forma a garantir a máxima eficiência das PCFCs, destacando-se a elevada condutividade protónica do eletrólito aquando da operação numa gama de temperaturas intermédias, 500-700ºC. Os materiais do tipo “perovskite” foram apresentados como potenciais candidatos a incorporar o eletrólito das PCFCs, sendo o BaZrO3 dopado com 15 mol% de ítrio (BZY) o material base escolhido neste trabalho. Apesar da sua conhecida elevada condutividade protónica, estes materiais apresentam algumas limitações, tais como a fraca sinterabilidade e crescimento de grão. De forma a ultrapassar esta dificuldade, foram adicionadas pequenas quantidades de óxidos de zinco, fósforo e boro que foram estudados como possíveis aditivos de sinterização. A adição de ZnO mostrou melhorias significativas na densificação quando comparado com o material não modificado (BZY), permitindo ainda reduzir a temperatura de sinterização de 1600ºC para 1300ºC. Neste trabalho estudou-se, também, qual o melhor mecanismo de solução sólida para a adição deste aditivo, tendo-se obtido a máxima condutividade protónica nos materiais em que o Zn é intencionalmente introduzido na composição de base de “perovskite”. O P2O5 mostrou ser menos efetivo como aditivo de sinterização. A sua presença foi bastante prejudicial no crescimento de grão, apesar dos elevados níveis de densificação obtidos quando adicionado em quantidades entre 4 e 8 mol%. Porém, a utilização de fósforo mostrou também ser dramática no transporte elétrico, diminuindo a condutividade não só no interior do grão (“bulk”) como nas suas fronteiras. Já a adição de H3BO3 ao BaZrO3 (BZO) mostrou-se muito efetiva para a sinterização deste componente. Contudo, quando adicionado ao sistema dopado com ítria (BaZr0.85Y0.15O3-, BZY), o comportamento é diferente, produzindo níveis deficientes de densificação quando comparado com o BZY puro. Este fenómeno ocorre devido à formação de fases secundárias de borato de bário, cujas temperaturas de fusão são bastante elevadas. Na última parte deste trabalho foi estudado um novo material com condutividade iónica de iões óxido, o (Ba,Sr)GeO3 dopado com K. Neste estudo pretendia-se, não só avaliar a possibilidade de preparar estes pós com recurso a processos mecanoquímicos, como também estudar o papel da variação do raio iónico do catião metálico alcalino-terroso no transporte iónico, homogeneidade composicional e estrutura cristalina. Verificou-se que este material apresenta uma alteração significativa na condutividade iónica com o aumento da temperatura de operação em ambas as composições (Ba e Sr).
Brugge, Rowena. „Garnet ceramic electrolytes for next-generation lithium batteries“. Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/63817.
Der volle Inhalt der QuelleFlint, Sara Dianne. „Experimental investigations of doped barium cerate and zirconate ceramic electrolytes“. Thesis, University of Exeter, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262596.
Der volle Inhalt der QuelleHekselman, Aleksandra K. „Crystalline polymer and 3D ceramic-polymer electrolytes for Li-ion batteries“. Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/11950.
Der volle Inhalt der QuelleSagane, Fumihiro. „Studies on ion transfer at interface between ceramic and liquid electrolytes“. 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136302.
Der volle Inhalt der QuelleHuang, Yuanye [Verfasser], und Joachim [Akademischer Betreuer] Maier. „Proton conducting electrolytes for ceramic fuel cells / Yuanye Huang ; Betreuer: Joachim Maier“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2020. http://d-nb.info/1221132636/34.
Der volle Inhalt der QuelleDenney, Jacob Michael. „The Thermal and Mechanical Characteristics of Lithiated PEO LAGP Composite Electrolytes“. Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1609971094548742.
Der volle Inhalt der QuelleSyzdek, Jarosław Sylwester. „Application of modified ceramic powders as fillers for composite polymeric electrolytes based on poly(oxyethylene)“. Amiens, 2010. http://www.theses.fr/2010AMIE0102.
Der volle Inhalt der QuelleThe primary goal of this work was to study the influence of surface-modified inorganic fillers on the properties of composite polymeric electrolytes based on poly(oxyethylene) of both low and high molecular weight. To study all interesting factors we chose three different aluminas and two titanias characterised by different grain sizes. It appeared that only microsized aluminas are readily modified. Less sensitive to the treatment is nano alumina and the least are titanias. Then obtained powders (26 in total) were applied as fillers for polymeric electrolytes based on poly(oxyethylene) of molecular weight aqual to 500 g•mol-1 (liquid at room temperature) and 5•106 g•mol-1 (liquid at room temperature) and 5•106 g•mol-1(solid at room temperature). Lithium perchlorate was used as a salt, its concentration was fixed to be 1 mol•kg-1. In general, a vast population of samples was prepared and it was shown that starting with the same material, one can obtain totally different products. That can explain many of the discrepancies found in the literature published on this subject over the last 20 years. Apart from that a universal procedure of samples preparation was established and conditions of conductivity improvement determined
Cheng, Ming. „Experimental investigation of the biaxial flexural strength of 8YSZ thin film ceramic substrates as electrolytes“. Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/279958.
Der volle Inhalt der QuelleFrenck, Louise. „Study of a buffer layer based on block copolymer electrolytes, between the lithium metal and a ceramic electrolyte for aqueous Lithium-air battery“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI041/document.
Der volle Inhalt der QuelleThe lithium-air (Li-air) technology developed by EDF uses an air electrode which works with an aqueous electrolyte, which prevents the use of unprotected lithium metal electrode as a negative electrode. A Li+ ionic conductor glass ceramic (LATP:Li1+xAlxTi2-x(PO4)3) has been used to separate the aqueous electrolyte compartment from the negative electrode. However, this glass-ceramic is not stable in contact with lithium, it is thus necessary to add between the lithium and the ceramic a buffer layer. In another hand, this protection should ideally resist to lithium dendritic growth. Thus, this project has been focused on the study of block copolymer electrolytes (BCE).In a first part, the study of the physical and chemical properties of these BCEs in lithium symmetric cells has been realized especially transport properties (ionic conductivities, transference number), and resistance to dendritic growth. Then, in a second part, the composites BCE-ceramic have been studied.Several characterization techniques have been employed and especially the electrochemical impedance spectroscopy (for the transport and the interface properties), the small angle X-ray scattering (for the BCE morphologies) and the hard X-ray micro-tomography (for the interfaces and the dendrites morphologies). For single-ion BCE, we have obtained interesting results concerning the mitigation of the dendritic growth. The hard X-ray micro-tomography has permitted to show that the mechanism involved in the heterogeneous lithium growth in the case of the single-ion is very different from the one involved for the neutral BCEs (t+ < 0.2)
Bücher zum Thema "Ceramic electrolytes"
Vladimír, Antonín, Hrsg. Keramické pevné elektrolyty. Praha: SNTL, 1985.
Den vollen Inhalt der Quelle findenDenmark) Risø International Symposium on Materials Science (32nd 2011 Roskilde. Composite materials for structural performance: Towards higher limits : proceedings of the 32nd Risø International Symposium on Materials Science, 5-9 September 2011. Herausgegeben von Fæster S. Roskilde, Denmark: Risø National Laboratory for Sustainable Energy, Technical University of Denmark, 2011.
Den vollen Inhalt der Quelle findenInternational Conference on Electroceramics (5th 2011 Sydney). Advanced multifunctional electroceramics: Selected, peer reviewed papers from the 5th International Conference on Electroceramics, December 12-16, 2011, Sydney, Australia. Durnten-Zurich, Switzerland: Trans Tech, 2013.
Den vollen Inhalt der Quelle findenAL. Ceramic Electrolytes All-Solid-state L: Ceramic Electrolytes for All-Solid-state Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Den vollen Inhalt der Quelle findenRaghavan, Prasanth, und Jabeen Fatima. Ceramic and Specialty Electrolytes for Energy Storage Devices. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenCeramic and Specialty Electrolytes for Energy Storage Devices. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenRaghavan, Prasanth, und Jabeen Fatima. Ceramic and Specialty Electrolytes for Energy Storage Devices. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenRaghavan, Prasanth, und Jabeen Fatima. Ceramic and Specialty Electrolytes for Energy Storage Devices. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenKotobuki, Masashi. Ceramic Electrolytes for All-Solid-State Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Den vollen Inhalt der Quelle findenRaghavan, Prasanth, und Jabeen Fatima M. J. Ceramic and Specialty Electrolytes for Energy Storage Devices. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ceramic electrolytes"
Julien, Christian, und Alain Mauger. „Ceramic Electrolytes“. In Rechargeable Lithium Metal Batteries, 407–513. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-67470-9_5.
Der volle Inhalt der QuelleGordon, R. S. „β-Alumina Ceramic Electrolytes“. In Inorganic Reactions and Methods, 199–202. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch138.
Der volle Inhalt der QuelleGordon, R. S. „Zircronia-Based Ceramic Electrolytes“. In Inorganic Reactions and Methods, 212–13. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch145.
Der volle Inhalt der QuelleThomas, Anjumole P., Akhila Das, Neethu T. M. Balakrishnan, Sajan Chinnan, Jou-Hyeon Ahn, Fatima M. J. Jabeen und Prasanth Raghavan. „Transparent Electrolytes“. In Ceramic and Specialty Electrolytes for Energy Storage Devices, 217–36. First edition. I Boca Raton : CRC Press, 2021. I Includes bibliographical references and: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144816-10.
Der volle Inhalt der QuelleWang, Jianhang, Huiling Zhao und Ying Bai. „Ceramic-Based Solid-State Electrolytes“. In ACS Symposium Series, 295–318. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch012.
Der volle Inhalt der QuelleRost, A., J. Schilm, M. Kusnezoff und A. Michaelis. „Li-Ion Conducting Solid Electrolytes“. In Ceramic Materials for Energy Applications III, 25–32. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807934.ch3.
Der volle Inhalt der QuelleMartin Haarberga, Geir, Sathiyaraj Kandhasamy, Signep Kjelstru, Marit T. Børsetc, Odne Burheimd und Xue Kange. „Thermoelectrochemical Cells with Molten Carbonate Electrolytes and Gas Electrodes“. In Ceramic Transactions Series, 225–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119494096.ch23.
Der volle Inhalt der QuellePaolella, Andrea. „Interfacial Reactions in Ceramic Electrolytes and Hybrids“. In Green Energy and Technology, 67–84. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-63713-1_7.
Der volle Inhalt der QuelleThanganathan, Uma. „Study on Heteropolyacids/Ti/Zr Mixed Inorganic Composites for Fuel Cell Electrolytes“. In Ceramic Transactions Series, 165–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511435.ch18.
Der volle Inhalt der QuelleRaskovalov, Anton A., und Nailya S. Saetova. „All-Solid-State Batteries Based on Glass-Ceramic Lithium Vanadate“. In Solid Electrolytes for Advanced Applications, 297–334. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31581-8_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ceramic electrolytes"
Wu, Xiaowen, Haomin Li, Meng Zhang, Zhenxing Wang, Yingsan Geng und Jianhua Wang. „Growth Characteristics of Plasma Electrolytic Oxidation Ceramic Insulating Film on the Surface of High-Temperature Resistant Wire“. In 2024 IEEE PES 16th Asia-Pacific Power and Energy Engineering Conference (APPEEC), 1–4. IEEE, 2024. https://doi.org/10.1109/appeec61255.2024.10922557.
Der volle Inhalt der QuelleGitzhofer, F., M.-E. Bonneau und M. Boulos. „Double Doped Ceria Electrolyte Synthesized by Solution Plasma Spraying with Induction Plasma Technology“. In ITSC2001, herausgegeben von Christopher C. Berndt, Khiam A. Khor und Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0061.
Der volle Inhalt der QuelleRao, R. Prasada, D. Safanama, M. H. Chen, M. V. Reddy und S. Adams. „Solid Ceramic Electrolytes for Lithium Sulphur Rechargeable Batteries“. In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_141.
Der volle Inhalt der QuelleLiu, Wei, Ryan Milcarek, Kang Wang und Jeongmin Ahn. „Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries“. In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Der volle Inhalt der QuelleMulay, Nishad, Dahyun Oh, Dan-Il Yoon und Sang-Joon (John) Lee. „Effect of Cyclic Compression on Mechanical Behavior of Ceramic-in-Polymer Composite Electrolytes for Lithium-Ion Batteries“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-69196.
Der volle Inhalt der QuelleZhu, Bin. „Advanced Ceramic Fuel Cell R&D“. In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2499.
Der volle Inhalt der QuelleChristenn, C., A. Ansar, A. Haug, S. Wolf und J. Arnold. „The Solution Precursor Plasma Spray Process for Making Zirconia based Electrolytes“. In ITSC2011, herausgegeben von B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima und A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p1184.
Der volle Inhalt der QuelleAdnan, S. B. R. S., und N. S. Mohamed. „Structural, electrical and electrochemical properties of Li4ZrxSi1-xO4 (0.02 ≤ x ≤ 0.06) ceramic electrolytes“. In ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015): 4th National Conference on Advanced Materials and Radiation Physics. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4928818.
Der volle Inhalt der QuelleCai, Kunpeng, Peng Gao und Yang Zhang. „Influence of Flame Pattern on the Combustion Synthesis of Ceramic Electrolytes Lei Lei“,. In 46th International Technical Conference on Clean Energy. Louisa, Virginia, USA: Coal Technologies Associates, 2022. http://dx.doi.org/10.52202/066314-0165.
Der volle Inhalt der QuelleBerke, Ryan B., und Mark E. Walter. „Mechanical Characterization and Modeling of Corrugated Metal Foams for SOFC Applications“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64472.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ceramic electrolytes"
Angell, C. A. Solid electrolytes and impact-resistant ceramics. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/5163200.
Der volle Inhalt der QuelleAngell, C. A. Solid electrolytes and impact-resistant ceramics. [Progress report]. Office of Scientific and Technical Information (OSTI), August 1991. http://dx.doi.org/10.2172/10150946.
Der volle Inhalt der QuelleKueper, T. W. Sol-gel derived ceramic electrolyte films on porous substrates. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/5011926.
Der volle Inhalt der QuelleKueper, Timothy Walter. Sol-gel derived ceramic electrolyte films on porous substrates. Office of Scientific and Technical Information (OSTI), Mai 1992. http://dx.doi.org/10.2172/10159001.
Der volle Inhalt der QuelleJ.N. Bruggeman, T.R. Alcorn, R. Jeltsch und T. Mroz. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis. Office of Scientific and Technical Information (OSTI), Januar 2003. http://dx.doi.org/10.2172/806856.
Der volle Inhalt der QuelleGhezel-Ayagh, Hossein. Proton-Conducting Ceramic Electrolyzers for High-Temperature Water Splitting. Office of Scientific and Technical Information (OSTI), Oktober 2022. http://dx.doi.org/10.2172/1971069.
Der volle Inhalt der QuelleGal-Or, L., S. Haber und S. Liubovich. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada265141.
Der volle Inhalt der QuelleTong, Jianhua (Joshua), Kyle S. Brinkman, Hai Xiao und Fei Peng. Laser 3D printing of highly compacted protonic ceramic electrolyzer stack. Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/2339934.
Der volle Inhalt der QuelleSakamoto, Jeffrey, Neil Dasgupta und Donald Siegel. Physical and Mechano-Electrochemical Phenomena of Thin Film Lithium-Ceramic Electrolyte Constructs. Office of Scientific and Technical Information (OSTI), Dezember 2022. http://dx.doi.org/10.2172/1905135.
Der volle Inhalt der QuelleAuthor, Not Given. Energy efficient process for recycling sodium sulfate utilizing ceramic solid electrolyte. Final report. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/765644.
Der volle Inhalt der Quelle