Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CHARGING AND DISCHARGING TIME“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CHARGING AND DISCHARGING TIME" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CHARGING AND DISCHARGING TIME"
Gao, Song, Linyu Wang, Lei Guo, Zhifeng Qiu und Yueshuang Bao. „A two-layer model to dispatch electric vehicles and wind power“. MATEC Web of Conferences 309 (2020): 05015. http://dx.doi.org/10.1051/matecconf/202030905015.
Der volle Inhalt der QuelleWang, Ying, Gang Ma, Yixi Chen, Jian Zhang und Jiashu Wang. „Multi-objective Charging and Discharging Optimization of Electric Vehicles in Time-divided period Based on SOC Evolution“. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 13, Nr. 4 (05.07.2020): 595–601. http://dx.doi.org/10.2174/2352096512666190911144557.
Der volle Inhalt der QuelleHou, Xiao Fan, und Hong Bin Wu. „Space-Time Modeling of Plug-In Electric Vehicles“. Advanced Materials Research 860-863 (Dezember 2013): 1065–68. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.1065.
Der volle Inhalt der QuelleMyat, Lwin Phone, Muhammad Shakeel Ahmad, Indra Neel Pulidindi, Hamed Algarni, Laveet Kumar, Abul Kalam, S. Wageh, Adarsh Kumar Pandey, Altaf Akbar und Jeyraj Selvaraj. „Effect of Polyethylene Glycol and Activated Carbon Macroparticles on Thermal Conductivity of Paraffin Wax for Thermal Storage Applications“. Polymers 14, Nr. 19 (05.10.2022): 4181. http://dx.doi.org/10.3390/polym14194181.
Der volle Inhalt der QuelleShi, Weijie, Qingrong Liu, Yingjun Ruan, Fanyue Qian und Hua Meng. „Quantification and economic analysis of virtual energy storage caused by thermal inertia in buildings“. Journal of Physics: Conference Series 2474, Nr. 1 (01.04.2023): 012002. http://dx.doi.org/10.1088/1742-6596/2474/1/012002.
Der volle Inhalt der QuelleZainurin, N. A., S. A. B. Anas und R. S. S. Singh. „A Review of Battery Charging - Discharging Management Controller: A Proposed Conceptual Battery Storage Charging – Discharging Centralized Controller“. Engineering, Technology & Applied Science Research 11, Nr. 4 (21.08.2021): 7515–21. http://dx.doi.org/10.48084/etasr.4217.
Der volle Inhalt der QuelleYu, Zicong, Ping Gong, Zhi Wang, Yongqiang Zhu, Ruihua Xia und Yuan Tian. „Real-Time Control Strategy for Aggregated Electric Vehicles to Smooth the Fluctuation of Wind-Power Output“. Energies 13, Nr. 3 (09.02.2020): 757. http://dx.doi.org/10.3390/en13030757.
Der volle Inhalt der QuelleZhang, Shuting, Fuqiang Tian, Jieyi Liang, Jinmei Cao und Zhaoliang Xing. „The Time, Electric Field, and Temperature Dependence of Charging and Discharging Currents in Polypropylene Films“. Polymers 15, Nr. 14 (22.07.2023): 3123. http://dx.doi.org/10.3390/polym15143123.
Der volle Inhalt der QuelleYan, Tao, Zhan Zhan Qu, Peng Fei Jia, Dong Hui und Yun Jia Liu. „Establishment and Research of Semi-Physical and Real-Time Simulation Platform for V2G Electric Vehicle Charging System“. Advanced Materials Research 1070-1072 (Dezember 2014): 1625–31. http://dx.doi.org/10.4028/www.scientific.net/amr.1070-1072.1625.
Der volle Inhalt der QuelleWang, Xuan Ze, Xu Qing Mo, Liang En Yang, Zhong Sheng Zhai, Wen Chao Liu und Zhi Xiong. „A Kind of Resistance Capacitance Measurement Method Based on Time Constant“. Advanced Materials Research 1037 (Oktober 2014): 156–60. http://dx.doi.org/10.4028/www.scientific.net/amr.1037.156.
Der volle Inhalt der QuelleDissertationen zum Thema "CHARGING AND DISCHARGING TIME"
Saas, Christoph [Verfasser]. „Energy Efficient Charging and Discharging of Dominant Capacitances / Christoph Saas“. Aachen : Shaker, 2007. http://d-nb.info/1170528066/34.
Der volle Inhalt der QuelleAloqaily, Osama. „Charging and Discharging Algorithms for Electric Vehicles in Smart Grid Environment“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34562.
Der volle Inhalt der QuelleFain, Daniel Ian. „A dual input bidirectional power converter for charging and discharging a PHEV battery“. Connect to this title online, 2009. http://etd.lib.clemson.edu/documents/1252424759/.
Der volle Inhalt der QuelleWang, Dian. „Microgrid based on photovoltaic energy for charging electric vehicle stations : charging and discharging management strategies in communication with the smart grid“. Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2584.
Der volle Inhalt der QuelleThe rapid development of electric vehicles (EVs) increases the power demand, which causes an extra burden on the public grid increasing the load fluctuations, therefore, hindering the high penetration of EVs. A real-time rule-based algorithm for electric vehicle (EV) charging stations empowered by a DC microgrid is proposed to deal with the uncertainties of EV users’ behaviour considering its arbitrary and random choices through the human-machine interface, meanwhile considering most of the users’ choices. The simulation results obtained under MATLAB/Simulink verify the feasibility of the proposed management strategy that presents a good performance in terms of precise control. In addition, EV shedding and restoration optimization algorithms (SROA) for battery charging power can be used to meet user needs while maintaining EV charging station power balance, taking into consideration the intermittency of the photovoltaic (PV) source, the capacity limitation of the storage, and the power limitation of the public grid. The simulation results show that compared with rule-based algorithm, the proposed SROA respect the user's choice while reducing total charging time, increasing the full rate, and maximizing the available power utilization, which shows the feasibility and effectiveness of SROA. Furthermore, a PV based charging station for EVs can participate to solve some peak power problems. On the other hand, vehicle to grid (V2G) technology is designed and applied to provide ancillary services grid during the peak periods, considering the duality of EV battery “load-source”. So, a dynamic searching peak and valley algorithm, based on energy management, is proposed for an EV charging station to mitigate the impact on the public grid, while reducing the energy cost of the public grid. Simulation results demonstrate the proposed searching peak and valley algorithm effectiveness, which can guarantee the balance of the public grid, meanwhile satisfy the charging demand of EV users, and most importantly, reduce the public grid energy cost
Nishikawa, Kei. „Mass transfer of Li[+] ion accompanied by charging and discharging reaction of Li battery electrode“. Kyoto University, 2006. http://hdl.handle.net/2433/135558.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(エネルギー科学)
甲第12623号
エネ博第141号
新制||エネ||34(附属図書館)
UT51-2006-S631
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)教授 尾形 幸生, 教授 八尾 健, 教授 福中 康博
学位規則第4条第1項該当
Mansour, Samah. „Performance optimization of hybrid, centralized, and decentralized adaptive charging/discharging schemes for plug-in electric vehicles“. Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121588.
Der volle Inhalt der QuelleCette thèse propose une méthodologie décentralisée pour la planification et la coordination des activités de charge et décharge des véhicules électriques (VEs) au sein des réseaux intelligents. La formulation d'optimisation est ensuite étendue vers une approche hybride qui peut être considérée comme un compromis entre l'approche centralisée et l'approche décentralisée. La fonction objectif des différents mécanismes de coordination proposés maximise l'écrê tage de pointe du point de vue de l'opérateur du système électrique. Les algorithmes proposés sont examinés de façon multidisciplinaire par moyen d'analyse et de co-simulation de la puissance électrique et de communication intelligente, sur une infrastructure de communications basées sur des technologies convergentes haut-débit optique et sans-fil. L'objectif principal de cette thèse est de réaliser une étude comparative entre les méthodes centralisée, décentralisée et hybride. La comparaison des méthodes proposées avec un algorithme de référence centralisé révèle le compromis de performances entre les trois approches. La comparaison tient compte de plusieurs métriques du réseau, telles que la demande de puissance, les pertes, les amplitudes de tension nodale, et, du point de vue des communications, la largeur de bande requise et le délai. L'adoption d'un algorithme parmi les trois proposés dépend de plusieurs facteurs, cependant le nombre de VEs semble être le facteur principal. Les algorithmes centralisés démontrent des performances optimales pour des taux relativement faibles de pénétration des VEs, alors que les systèmes décentralisés sont nécessaires lorsqu'il y a un nombre croissant de VEs. D'autre part, les systèmes hybrides sont capables de répondre aux pics de demandes successives résultant de systèmes décentralisés avec des taux de pénétration très élevés.
Wu, Wenzhuo. „Charging time estimation and study of charging behavior for automotive Li-ion battery cells using a Matlab/Simulink model“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194490.
Der volle Inhalt der QuelleEn noggrann estimering av laddtiden hos batterier avsedda för traktionsapplikationer kräver kunskap kring batteriets och dess tillhörande laddsystems parametervärden. Utan tillgång till denna information kan laddtiden endast uppskattas från fordonsägarens tidigare erfarenheter vilket försvårar t.ex. ruttplanering. En estimering av laddtiden med tillräcklig noggrannhet kan även möjliggöra bättre utnyttjade av laddutrusting inklusive nyttjandet av publika laddstationer. I detta examensarbete har en algoritm, implementerad i Matlab/Simulink, för att estimera laddtiden hos ett litiumjonbatteripack bestående av 32 celler på vardera 40 Ah tagits fram. Med hjälp av modellen har olika laddstrategier och metoder för att balansera cellerna studerats. Ett antal olika batterimodeller har jämförts i termer av noggrannhet och krav på beräkningsprestanda. En elektriskt ekvivalent krets från referens [1], bestående av en serieresistans samt två ZARC-element, valdes slutligen för att representera battericellen. Den ekvivalenta kretsens parametrar uppdateras vid förändringar i SOC, ström och temperatur. Hela simuleringsmodellen består av en laddregulator (i vilken laddstrategin är implementerad), cellbalanseringregulator och modeller för cell och cellbalanseringens hårdvara. Ett antal metoder för att balanser cellerna har jämförts med hänsyn till påverkan på den resulterande laddtiden. En traditionell samt modifierad CCCV laddstrategi har implementerats och jämförts med avseende på variationer i inledande SOC, total laddtid samt åldring. Experimentella resultat från en hardware-in-the-loop simulering har använts för att delvis kunna verifiera de framtagna resultaten.
Huttin, Magalie [Verfasser], und M. [Akademischer Betreuer] Kamlah. „Phase-field modeling of the influence of mechanical stresses on charging and discharging processes in lithium ion batteries / Magalie Huttin. Betreuer: M. Kamlah“. Karlsruhe : KIT-Bibliothek, 2014. http://d-nb.info/1049730585/34.
Der volle Inhalt der QuelleDudley, Paul. „Optimal time-related charging in competitive markets with particular reference to electricity“. Thesis, Loughborough University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297117.
Der volle Inhalt der QuelleDresler, Jan. „Tester akumulátorů s modulem ESP32“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400923.
Der volle Inhalt der QuelleBücher zum Thema "CHARGING AND DISCHARGING TIME"
Services, Great Britain Office of Water. Paying for water: A time for decisions : a consultation paper issued by the Director General of Water Services on future charging policy for water and sewerage services. Birmingham: OFWAT, 1991.
Den vollen Inhalt der Quelle findenGreat Britain. Office of Water Services. Paying for water: A time for decisions : a consultation paper issued by the Director General of Water Services on future charging policy for water and sewerage services. Birmingham: Ofwat, 1990.
Den vollen Inhalt der Quelle findenWang, Miao, Ran Zhang und Xuemin (Sherman) Shen. Mobile Electric Vehicles: Online Charging and Discharging. Springer London, Limited, 2015.
Den vollen Inhalt der Quelle findenWang, Miao, Ran Zhang und Xuemin (Sherman) Shen. Mobile Electric Vehicles: Online Charging and Discharging. Springer, 2015.
Den vollen Inhalt der Quelle findenWang, Miao, Ran Zhang und Xuemin (Sherman) Shen. Mobile Electric Vehicles: Online Charging and Discharging. Springer, 2019.
Den vollen Inhalt der Quelle findenThompson, Scott E. Trap generation-annihilation and charging-discharging processes in thin oxides. 1992.
Den vollen Inhalt der Quelle findenDudley, Paul Spencer. Optimal time-related charging in competitive markets with particular reference to electricity. 1995.
Den vollen Inhalt der Quelle findenPascal, Pichonnaz. Ch.8 Set-off, Art.8.5. Oxford University Press, 2015. http://dx.doi.org/10.1093/law/9780198702627.003.0168.
Der volle Inhalt der QuellePascal, Pichonnaz. Ch.8 Set-off, Art.8.3. Oxford University Press, 2015. http://dx.doi.org/10.1093/law/9780198702627.003.0166.
Der volle Inhalt der QuelleBuchteile zum Thema "CHARGING AND DISCHARGING TIME"
Meerimatha, Gadaram, und B. Loveswararao. „Analytical Approach Optimal Sizing and Time Scheduling of ESS Charging-Discharging Energy in Distribution Networks“. In Lecture Notes in Electrical Engineering, 381–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8942-9_32.
Der volle Inhalt der QuelleWang, Miao, Ran Zhang und Xuemin Shen. „Charging/Discharging for EVs“. In Wireless Networks, 15–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25130-1_2.
Der volle Inhalt der QuelleMa, Zhongjing. „Decentralized Charging and Discharging Coordination“. In Decentralized Charging Coordination of Large-scale Plug-in Electric Vehicles in Power Systems, 131–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7652-8_5.
Der volle Inhalt der QuelleQin, Jiahu, Yanni Wan, Fangyuan Li, Yu Kang und Weiming Fu. „Extensions to PEVs Charging/Discharging Scheduling“. In Distributed Economic Operation in Smart Grid: Model-Based and Model-Free Perspectives, 175–237. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8594-2_5.
Der volle Inhalt der QuelleChauhan, Bhaskar, und Sachin K. Jain. „Scheduling of Electric Vehicle’s Charging–Discharging: An Overview“. In Energy Systems in Electrical Engineering, 109–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2800-2_6.
Der volle Inhalt der QuelleNguyen, Hung Khanh, und Ju Bin Song. „Noncooperative Energy Charging and Discharging Game for Smart Grid“. In Game Theory for Networking Applications, 187–201. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93058-9_14.
Der volle Inhalt der QuelleUchiyama, Ryo, Hiroaki Miyake, Yasuhiro Tanaka und Tatuo Takada. „Charging and Discharging Characteristic on PI Films Irradiated by Protons“. In Protection of Materials and Structures From the Space Environment, 459–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30229-9_42.
Der volle Inhalt der QuelleSu, Guangning, Da Xie, Yusheng Xue, Chen Fang, Yu Zhang und Kang Li. „Information Fusion for Intelligent EV Charging-Discharging-Storage Integrated Station“. In Communications in Computer and Information Science, 434–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45286-8_46.
Der volle Inhalt der QuelleSuganthi, D., und K. Jamuna. „Charging and Discharging Characterization of a Community Electric Vehicle Batteries“. In Springer Proceedings in Energy, 213–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0719-6_17.
Der volle Inhalt der QuelleVorotyntsev, M. A., E. Vieil und J. Heinze. „Charging — Discharging Process of Polypyrrole Films in Solutions of Tetraphenylborate Anions“. In New Promising Electrochemical Systems for Rechargeable Batteries, 333–46. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1643-2_27.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CHARGING AND DISCHARGING TIME"
Nakayamada, Noriaki, Takashi Kamikubo, Hirohito Anze und Shuichi Tamamushi. „Advancing the charging effect correction with time-dependent discharging model“. In Photomask and NGL Mask Technology XVIII, herausgegeben von Toshio Konishi. SPIE, 2011. http://dx.doi.org/10.1117/12.899905.
Der volle Inhalt der QuelleGraf, Christian, Thorben Hoffstadt und Jürgen Maas. „Optimization of the Charging Process for Dielectric Elastomer Generators“. In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8179.
Der volle Inhalt der QuelleLiu, Chang, Robynne E. Murray und Dominic Groulx. „Experimental Study of Cylindrical Latent Heat Energy Storage Systems Using Lauric Acid as the Phase Change Material“. In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58279.
Der volle Inhalt der QuelleMhaisen, Naram, Noora Fetais und Ahmed Massoud. „Real-Time Scheduling for Electric Vehicles Charging/Discharging Using Reinforcement Learning“. In 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). IEEE, 2020. http://dx.doi.org/10.1109/iciot48696.2020.9089471.
Der volle Inhalt der QuelleAbdelhafiz, Shahenda M., A. M. AbdelAty, M. E. Fouda und A. G. Radwan. „Time-domain Li-ion Battery Modeling Under Staircase Charging and Discharging“. In 2021 International Conference on Microelectronics (ICM). IEEE, 2021. http://dx.doi.org/10.1109/icm52667.2021.9664909.
Der volle Inhalt der QuelleElatar, Ahmed, Kashif Nawaz, Bo Shen, Van Baxter und Omar Abdelaziz. „Characterization of Wrapped Coil Tank Water Heater During Charging/Discharging“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71818.
Der volle Inhalt der QuelleZhang, Zixuan, Yuning Jiang, Yuanming Shi, Ye Shi und Wei Chen. „Federated Reinforcement Learning for Real-Time Electric Vehicle Charging and Discharging Control“. In 2022 IEEE Globecom Workshops (GC Wkshps). IEEE, 2022. http://dx.doi.org/10.1109/gcwkshps56602.2022.10008598.
Der volle Inhalt der QuelleYu Ru, Jan Kleissl und Sonia Martinez. „Battery sizing for grid connected PV systems with fixed minimum charging/discharging time“. In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314783.
Der volle Inhalt der QuelleSiddiquee, Abu Nayem Md Asraf, und Kwangkook Jeong. „Conjugated Dynamic Modeling on Vanadium Redox Flow Battery With Non-Constant Variance for Renewable Power Plant Applications“. In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67462.
Der volle Inhalt der QuelleQureshi, Ubaid, Arnob Ghosh und Bijaya Ketan Panigrahi. „Real-Time Control for Charging Discharging of Electric Vehicles in a Charging Station with Renewable Generation and Battery Storage“. In 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). IEEE, 2021. http://dx.doi.org/10.1109/sefet48154.2021.9375717.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CHARGING AND DISCHARGING TIME"
Kozumplik, Brian J. Electric Vehicle Recharge Time, Reliability, and Interoperability. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Dezember 2022. http://dx.doi.org/10.4271/epr2022028.
Der volle Inhalt der QuelleKozumplik, Brian J. Electric Charging Intended Functionality, Availability, and Equity Inclusion. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Januar 2023. http://dx.doi.org/10.4271/epr2023001.
Der volle Inhalt der QuelleHuatian, Xu, und Bi Wuxi. PR469-183600-R01 The Influence of Solid State Decouplers on Pipeline CP Surveys. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2020. http://dx.doi.org/10.55274/r0011935.
Der volle Inhalt der QuelleKamp, Bart, Carmen Vallverdu und Eduardo Sisti . The servitization of business among industrial companies in Catalonia. Herausgegeben von Patricia Canto. Universidad de Deusto, 2023. http://dx.doi.org/10.18543/bieu8943.
Der volle Inhalt der QuelleLaw, Edward, Samuel Gan-Mor, Hazel Wetzstein und Dan Eisikowitch. Electrostatic Processes Underlying Natural and Mechanized Transfer of Pollen. United States Department of Agriculture, Mai 1998. http://dx.doi.org/10.32747/1998.7613035.bard.
Der volle Inhalt der QuelleCialone, H., D. N. Williams und T. P. Groeneveld. L51621 Hydrogen-Related Failures at Mechanically Damaged Regions. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1991. http://dx.doi.org/10.55274/r0010313.
Der volle Inhalt der Quelle