Auswahl der wissenschaftlichen Literatur zum Thema „Chemical defence“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Chemical defence" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Chemical defence"

1

Skelhorn, John, and Candy Rowe. "Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey." Biology Letters 1, no. 4 (2005): 500–503. http://dx.doi.org/10.1098/rsbl.2005.0359.

Der volle Inhalt der Quelle
Annotation:
Chemically defended insects advertise their unpalatability to avian predators using conspicuous aposematic coloration that predators learn to avoid. Insects utilize a wide variety of different compounds in their defences, and intraspecific variation in defence chemistry is common. We propose that polymorphisms in insect defence chemicals may be beneficial to insects by increasing survival from avian predators. Birds learn to avoid a colour signal faster when individual prey possesses one of two unpalatable chemicals rather than all prey having the same defence chemical. However, for chemical p
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hantak, Maggie M., Daniel J. Paluh, and Ralph A. Saporito. "Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators." Journal of Tropical Ecology 32, no. 2 (2016): 165–69. http://dx.doi.org/10.1017/s0266467416000055.

Der volle Inhalt der Quelle
Annotation:
Abstract:Defensive chemicals in anuran skin secretions function in protection against potential predators. Although studies have demonstrated that particular chemicals are effective against certain predators, very little is known about how different chemicals from different species function against the same predators. Understanding how different chemicals function as a defence against similar predators is fundamental to the ecology and evolution of chemical defences in frogs. In the present study, the defensive function of bufadienolide-based defences in adult Rhaebo haematiticus (Bufonidae) w
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arbuckle, Kevin. "Chemical antipredator defence is linked to higher extinction risk." Royal Society Open Science 3, no. 11 (2016): 160681. http://dx.doi.org/10.1098/rsos.160681.

Der volle Inhalt der Quelle
Annotation:
Many attributes of species may be linked to contemporary extinction risk, though some such traits remain untested despite suggestions that they may be important. Here, I test whether a trait associated with higher background extinction rates, chemical antipredator defence, is also associated with current extinction risk, using amphibians as a model system—a group facing global population declines. I find that chemically defended species are approximately 60% more likely to be threatened than species without chemical defence, although the severity of the contemporary extinction risk may not rel
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Skelhorn, John, and Candy Rowe. "Avian predators taste–reject aposematic prey on the basis of their chemical defence." Biology Letters 2, no. 3 (2006): 348–50. http://dx.doi.org/10.1098/rsbl.2006.0483.

Der volle Inhalt der Quelle
Annotation:
Avian predators learn to avoid defended insects on the basis of their conspicuous warning coloration. In many aposematic species, the level of chemical defence varies, with some individuals being more defended than others. Sequestration and production of defence chemicals is often costly and therefore less defended individuals enjoy the benefits of the warning signal without paying the full costs of chemical production. This is a fundamental theoretical problem for the evolutionary stability of aposematism, since less defended individuals appear to be at a selective advantage. However, if pred
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Guan, Chi, Mahasweta Saha, and Florian Weinberger. "Chemical Defence of a Seagrass against Microfoulers and Its Seasonal Dynamics." Applied Sciences 9, no. 6 (2019): 1258. http://dx.doi.org/10.3390/app9061258.

Der volle Inhalt der Quelle
Annotation:
In marine environments bacterial microfoulers are an important determinant for the settlement of algal and animal macrofoulers. At the same time fouling is usually subject to seasonal fluctuation. Additionally, the seagrass Zostera marina is prone to microfouling, although this marine spermatophyte is known to be chemically defended against bacterial settlers. Spermatophytes are often capable of induced or activated defences against biological enemies such as pathogens or herbivores, but it is still unknown whether they can fine-tune their antifouling-defence according to settlement pressure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Rasher, Douglas B., and Mark E. Hay. "Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed." Proceedings of the Royal Society B: Biological Sciences 281, no. 1777 (2014): 20132615. http://dx.doi.org/10.1098/rspb.2013.2615.

Der volle Inhalt der Quelle
Annotation:
Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica , the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as da
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Curley, Edward A. M., Hannah E. Rowley, and Michael P. Speed. "A field demonstration of the costs and benefits of group living to edible and defended prey." Biology Letters 11, no. 6 (2015): 20150152. http://dx.doi.org/10.1098/rsbl.2015.0152.

Der volle Inhalt der Quelle
Annotation:
Both theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the an
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Braekman, J. C., and D. Daloze. "Chemical defence in sponges." Pure and Applied Chemistry 58, no. 3 (1986): 357–64. http://dx.doi.org/10.1351/pac198658030357.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Read, Jennifer, Emma Gras, Gordon D. Sanson, Fiona Clissold, and Charlotte Brunt. "Does chemical defence decline more in developing leaves that become strong and tough at maturity?" Australian Journal of Botany 51, no. 5 (2003): 489. http://dx.doi.org/10.1071/bt03044.

Der volle Inhalt der Quelle
Annotation:
Leaves that are expanding cannot be very tough or strong because of the constraints of cell expansion, and therefore are particularly vulnerable to being eaten. We predicted that expanding leaves would be better defended chemically than mature leaves, and that this difference would be most pronounced in species whose leaves are tougher and stronger at maturity, i.e. that chemical defence declines as the leaf increases its mechanical defences. We tested this hypothesis by comparing leaf mechanical properties and total phenolics in three species with relatively tough and strong mature leaves (Do
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nakano, Saya, Michio Oguro, Tomoyuki Itagaki, and Satoki Sakai. "Florivory defence: are phenolic compounds distributed non-randomly within perianths?" Biological Journal of the Linnean Society 131, no. 1 (2020): 12–25. http://dx.doi.org/10.1093/biolinnean/blaa099.

Der volle Inhalt der Quelle
Annotation:
Abstract Plants might allocate chemical defences unequally within attractive units of flowers including petals, sepals, and bracts because of variations in the probability of florivory. Based on optimal defence theory, which predicts that plants allocate higher chemical defences to tissues with higher probabilities of herbivore attack, we predicted that distal parts and sepals would have higher chemical defence allocations than proximal parts and petals. To test this prediction, we compared total phenolics and condensed tannins concentrations as well as presence of florivory within attractive
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Chemical defence"

1

Danielsson, Marie. "Chemical defence in Norway spruce." Doctoral thesis, KTH, Organisk kemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-31133.

Der volle Inhalt der Quelle
Annotation:
Norway spruce (Picea abies) responds to stress by biosynthesis of chemical substances, which can deter invading insects or pathogens. Some of these substances are volatile and can be emitted to the surroundings while others are accumulated within the tree. Information about the susceptibility of individual plants to infestation, their volatile emissions and chemical defence is of interest, for example, in selecting plants for tree breeding programs. The first part of this research focused on volatiles emitted by Norway spruce plants. Collection of headspace volatiles by SPME and subsequent sep
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Hsieh, Ji-Fan (Sarah). "Molecular and Chemical Mechanisms of Defence against Myrtle Rust in Australian Myrtaceae." Phd thesis, Canberra, ACT : The Australian National University, 2018. http://hdl.handle.net/1885/143530.

Der volle Inhalt der Quelle
Annotation:
Increased human disturbance to forest ecosystems has exacerbated the spread of fungal pathogens to non-native environments. Rust pathogens (Pucciniales) can spread long distances by human activity and wind dispersal, and can cause severe disease outbreaks in cereal crops and in forest trees. The exotic fungus Austropuccinia psidii (myrtle rust) arrived in Australia in 2010 and most species of native Myrtaceae including Eucalyptus and Melaleuca are susceptible to infection to various degrees. Plants infected by A. psidii can suffer from crown loss and eve
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Knapp, Jennifer J. "Chemical aspects of communication and defence in leaf-cutting ants." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295675.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Law-Brown, Janette. "Chemical defence in the red-billed wood hoopoe : phoeniculus purpureus." Master's thesis, University of Cape Town, 2001. http://hdl.handle.net/11427/6119.

Der volle Inhalt der Quelle
Annotation:
Red-billed Woodhoopoes, Phoeniculus purpureus, produce a pungent smelling secretion from their uropygial gland. Previous researchers have noted this odour and there has been much speculation on its function. This encouraged me to undertake this study to determine the origin of the odour and the role that the secretion plays. The chemical analysis of this secretion shows that it consists of 17 compounds including acids, aldehydes, lactones and other miscellaneous compounds. Cultures of the secretion showed the presence of a symbiotic bacterium resident within the gland. Antibiotic treatment of
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Thornton, Robert. "The effect of the aircrew chemical defence assembly on thermal strain." Thesis, University of Edinburgh, 1988. http://hdl.handle.net/1842/27005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Paul, Nicholas Andrew School of Biological Earth &amp Environmental Sciences UNSW. "The ecology of chemical defence in a filamentous marine red alga." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences, 2006. http://handle.unsw.edu.au/1959.4/24304.

Der volle Inhalt der Quelle
Annotation:
I investigated the ecological functions of halogenated secondary metabolites from the red alga Asparagopsis armata, their localisation in specialised cells and also their cost of production. A. armata produces large amounts of halogenated metabolites ( &lt 20 ??g / mg dry weight) that are sequestered in gland cells, as was demonstrated with light, epifluorescence and transmission electron microscopy. Cellular structures were identified that likely assist the release of metabolites from the gland cells to the algal surface. The halogenated metabolites of A. armata have multiple ecological roles
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ohlsson, Åse. "Do plants change their defence strategy from a structural defence to a chemical one as a response to heavier herbivory?" Thesis, Södertörn University College, School of Life Sciences, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-310.

Der volle Inhalt der Quelle
Annotation:
<p>To the main part, this paper is the result of a literature survey and to the minor part of a field survey. The study is found on the question of, if and why unpalatable plant species invade heavily grassed rangelands and if plants change their defence strategy from a mechanical defence to a chemical defence if the herbivory pressure increase. I conclude that defended plants do invade heavily grassed rangelands if the rangelands lose essential recourses (often nutrients) and/or the defended plants are strongly avoided by mammalian herbivores. I also conclude that plants do go from a mechanic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Foster, Rosie. "Plants signalling to herbivores : is there a link between chemical defence and visual cues?" Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45168/.

Der volle Inhalt der Quelle
Annotation:
The use of visual cues by insect herbivores is likely to be an important component of plant-herbivore interactions in the wild, yet has until recently received little attention from researchers. In the last decade, however, interest in this topic has intensified following Hamilton & Brown's (2001) autumn colouration hypothesis, which proposes that the intensity of colouration of trees at autumn time is a signal of their defensive commitment to potential herbivores. This idea remains controversial and to date robust empirical data linking colouration with chemical defence and herbivory have bee
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hedner, Erik. "Bioactive Compounds in the Chemical Defence of Marine Sponges : Structure-Activity Relationships and Pharmacological Targets." Doctoral thesis, Uppsala University, Division of Pharmacognosy, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8218.

Der volle Inhalt der Quelle
Annotation:
<p>Marine invertebrates, in particular sponges, represent a source of a wide range of secondary metabolites, many of which have been attributed various defensive capabilities against environmental stress factors. In this thesis sponge-derived low-molecular peptide-like compounds and associated analogs are investigated for bioactivity and pharmacological targets. </p><p>The compound bromobenzisoxazolone barettin (cyclo[(6-bromo-8-(6-bromo-benzioxazol -3(1H)-one)-8-hydroxy)tryptophan)]arginine) was isolated from the sponge <i>Geodia barretti</i> and its ability to inhibit larval settlement of th
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pöykkö, H. (Heikki). "Host range of lichenivorous moths with special reference to nutritional quality and chemical defence in lichens." Doctoral thesis, University of Oulu, 2005. http://urn.fi/urn:isbn:951427959X.

Der volle Inhalt der Quelle
Annotation:
Abstract Host use and range of herbivorous insects are determined by several factors, of which nutritional quality and secondary chemistry have been shown to play very important roles. For herbivores feeding on lichens these traits are assumed to be more critical than for species feeding on higher plants, since lichens are nutritionally poor and often contain high concentrations of secondary metabolites. I examined the role of lichens' nutritional quality and secondary chemicals on the performance of lichen-feeding Lepidopteran larvae. I also tested whether females of lichenivorous species pre
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Chemical defence"

1

Sen, A. K. Defence against chemical and biological agents. Defence Research and Development Organisation, Ministry of Defence, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

K, Sen A. Defence against chemical and biological agents. Defence Research and Development Organisation, Ministry of Defence, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Defence Research & Development Organisation (India), ed. Defence against chemical and biological agents. Defence Research and Development Organisation, Ministry of Defence, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Great Britain. Ministry of Defence. Medical manual of defence against chemical agents: By command of the Defence Council. 6th ed. H.M.S.O., 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

B, Carter G., ed. Chemical and biological defence at Porton Down, 1916-2000. H.M.S.O., 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Canada. Department of National Defence. Research, development and training in chemical and biological defence within the Department of National Defence and the Canadian Forces: A review. s.n, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Collins, Charles J., and John C. Carrano. Optically based biological and chemical detection for defence V: 1 September 2009, Berlin, Germany. SPIE, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

The killing factory: The top secret world of germ and chemical warfare. Smith Gryphon, c1996., 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

1955-, Grote James Gerard, Kajzar F, Lindgren Mikael, SPIE Europe, Defence IQ (Organization), and Society of Photo-optical Instrumentation Engineers., eds. Optical materials in defence systems technology III: 13-14 September 2006, Stockholm, Sweden. SPIE, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hol, Wilhelmina Hermina Geertruida. The role of pyrrolizidine alkaloids from Senecio jacobaea in the defence against fungi. Universiteit Leiden, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Chemical defence"

1

Putz, Annika, and Peter Proksch. "Chemical Defence in Marine Ecosystems." In Functions and Biotechnology of Plant Secondary Metabolites. Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444318876.ch3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lindsay, Christopher D., James R. Riches, Neil Roughley, and Christopher M. Timperley. "CHAPTER 8. Chemical Defence Against Fentanyls." In Chemical Warfare Toxicology. Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782628071-00259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

van Dam, Nicole M., and Sheila K. Bhairo-Marhé. "Induced chemical defence in Cynoglossum officinale." In Proceedings of the 8th International Symposium on Insect-Plant Relationships. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1654-1_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumar, Narendra, and Ambesh Dixit. "Nanotechnology-Enabled Management of Chemical, Biological, Radiological, and Nuclear Threats." In Nanotechnology for Defence Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29880-7_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pasteels, Jacques M., Martine Rowell-Rahier, Jean-Claude Braekman, and Désiré Daloze. "Chemical defence of adult leaf beetles updated." In Novel aspects of the biology of Chrysomelidae. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1781-4_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Moreira, Xoaquín, Rafael Zas, and Luis Sampedro. "Methyl Jasmonate as Chemical Elicitor of Induced Responses and Anti-Herbivory Resistance in Young Conifer Trees." In Plant Defence: Biological Control. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1933-0_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tiku, Anupama Razdan. "Direct and Indirect Defence Against Insects." In Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-2467-7_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Davis, Bradley S. "Transitional Perspectives on Conventional, Chemical and Biological Weapons Production." In United States Post-Cold War Defence Interests. Palgrave Macmillan UK, 2004. http://dx.doi.org/10.1057/9780230000834_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bologna, Mauro. "Immunological Defence Mechanisms Against Biological Agents." In Detection of Chemical, Biological, Radiological and Nuclear Agents for the Prevention of Terrorism. Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9238-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Harborne, J. B. "Role of Secondary Metabolites in Chemical Defence Mechanisms in Plants." In Ciba Foundation Symposium 154 - Bioactive Compounds from Plants. John Wiley & Sons, Ltd., 2007. http://dx.doi.org/10.1002/9780470514009.ch10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Chemical defence"

1

Sivalingam, Yuvaraj, Gabriele Magna, Roberto Paolesse, and Corrado di Natale. "Photo-assisted chemical sensors." In SPIE Security + Defence, edited by Douglas Burgess, Gari Owen, Harbinder Rana, Roberto Zamboni, François Kajzar, and Attila A. Szep. SPIE, 2014. http://dx.doi.org/10.1117/12.2071187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ruxton, K., G. Robertson, W. Miller, G. P. A. Malcolm, G. T. Maker, and C. R. Howle. "Infrared hyperspectral imaging for chemical vapour detection." In SPIE Security + Defence, edited by Colin Lewis and Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.975057.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Brett, Cory J. C., Robert S. DiPietro, Dimitris G. Manolakis, and Vinay K. Ingle. "Efficient implementations of hyperspectral chemical-detection algorithms." In SPIE Security + Defence, edited by Gary W. Kamerman, Ove K. Steinvall, Gary J. Bishop, and John D. Gonglewski. SPIE, 2013. http://dx.doi.org/10.1117/12.2028562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Takehisa, K. "New concepts of realizing a chemical oxygen laser." In SPIE Security + Defence, edited by David H. Titterton, Mark A. Richardson, Robert J. Grasso, Willy L. Bohn, and Harro Ackermann. SPIE, 2014. http://dx.doi.org/10.1117/12.2069708.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Park, Yoon S., P. Pasupathy, and Dean P. Neikirk. "Resonant chemical surveillance tags." In Optics/Photonics in Security and Defence, edited by Gary W. Kamerman, Ove K. Steinvall, Keith L. Lewis, Keith A. Krapels, John C. Carrano, and Arturas Zukauskas. SPIE, 2007. http://dx.doi.org/10.1117/12.736975.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lavoie, Hugo, Jean-Marc Thériault, François Bouffard, Eldon Puckrin, and Denis Dubé. "LWIR hyperspectral imaging application and detection of chemical precursors." In SPIE Security + Defence, edited by Colin Lewis and Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.974605.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Clewes, Rhea J., Chris R. Howle, David J. M. Stothard, et al. "Stand-off spectroscopy for the detection of chemical warfare agents." In SPIE Security + Defence, edited by Colin Lewis and Douglas Burgess. SPIE, 2012. http://dx.doi.org/10.1117/12.974574.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Munk, Jens K., Ole T. Buus, Jan Larsen, et al. "CRIM-TRACK: sensor system for detection of criminal chemical substances." In SPIE Security + Defence, edited by Douglas Burgess, Gari Owen, Harbinder Rana, Roberto Zamboni, François Kajzar, and Attila A. Szep. SPIE, 2015. http://dx.doi.org/10.1117/12.2194915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Webber, Michael E., Michael B. Pushkarsky, and C. Kumar N. Patel. "Optical detection of chemical warfare agents and toxic industrial chemicals." In European Symposium on Optics and Photonics for Defence and Security, edited by John C. Carrano and Arturas Zukauskas. SPIE, 2004. http://dx.doi.org/10.1117/12.579109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bellecci, C., P. Gaudio, M. Gelfusa, et al. "Database for chemical weapons detection: first results." In SPIE Europe Security and Defence, edited by John C. Carrano and Arturas Zukauskas. SPIE, 2008. http://dx.doi.org/10.1117/12.800193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Chemical defence"

1

Nayfack, Nicholas, and Robert W. MacDougall. Chemical Biological Defense (CBD) Simulations. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada396828.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shuely, Wendel J. Chemical-Material Data Bases: Chemical Defense Material Data Base. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada327593.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Morris, Mariana. Low Level Chemical Toxicity: Relevance to Chemical Agent Defense. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada422716.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Larsen, James P. Chemical Warfare, Terrorism, and National Defense. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada394318.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ross, Jo, and Cay Ervin. Chemical Defense Flight Glove Ensemble Evaluation. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada188401.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Johnson-Winegar, Anna. DoD Chemical/Biological Defense Program Overview. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada422847.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Thedford, Debra. Department of Defense Chemical, Biological, Radiological and Nuclear Defense Program Overview. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada423645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bonin, Benjamin J., Nataly Lyn Beck, Patricia Marie Hernandez, Trisha Hoette Miller, and Janson Wu. DHS Chemical and Biological Defense Architecture Development. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1592857.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DEPARTMENT OF DEFENSE WASHINGTON DC. Department of Defense Nuclear/Biological/Chemical (NBC) Defense, Annual Report to Congress. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada339415.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Robinette, Kathleen M., and James F. Annis. A Nine-Size System for Chemical Defense Gloves. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada173193.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!