Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Coherence (Optics).

Zeitschriftenartikel zum Thema „Coherence (Optics)“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Coherence (Optics)" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, no. 5270 (June 28, 1996): 1897–98. http://dx.doi.org/10.1126/science.272.5270.1897-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, no. 5270 (June 28, 1996): 1897b—1898b. http://dx.doi.org/10.1126/science.272.5270.1897b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chriki, Ronen, Slava Smartsev, David Eger, Ofer Firstenberg, and Nir Davidson. "Coherent diffusion of partial spatial coherence." Optica 6, no. 11 (October 29, 2019): 1406. http://dx.doi.org/10.1364/optica.6.001406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mandel, Leonard, Emil Wolf, and Jeffrey H. Shapiro. "Optical Coherence and Quantum Optics." Physics Today 49, no. 5 (May 1996): 68–70. http://dx.doi.org/10.1063/1.2807623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mandel, Leonard, Emil Wolf, and Pierre Meystre. "Optical Coherence and Quantum Optics." American Journal of Physics 64, no. 11 (November 1996): 1438–39. http://dx.doi.org/10.1119/1.18450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hyde, Milo. "Controlling the Spatial Coherence of an Optical Source Using a Spatial Filter." Applied Sciences 8, no. 9 (August 26, 2018): 1465. http://dx.doi.org/10.3390/app8091465.

Der volle Inhalt der Quelle
Annotation:
This paper presents the theory for controlling the spectral degree of coherence via spatial filtering. Starting with a quasi-homogeneous partially coherent source, the cross-spectral density function of the field at the output of the spatial filter is found by applying Fourier and statistical optics theory. The key relation obtained from this analysis is a closed-form expression for the filter function in terms of the desired output spectral degree of coherence. This theory is verified with Monte Carlo wave-optics simulations of spatial coherence control and beam shaping for potential use in f
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Singer, Andrej, and Ivan A. Vartanyants. "Coherence properties of focused X-ray beams at high-brilliance synchrotron sources." Journal of Synchrotron Radiation 21, no. 1 (November 2, 2013): 5–15. http://dx.doi.org/10.1107/s1600577513023850.

Der volle Inhalt der Quelle
Annotation:
An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here Gaussian Schell-model beams and thin optical elements are considered. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam-defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherenc
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Law, Yuk. "The Optics of Optical Coherence Tomography." JACC: Cardiovascular Imaging 12, no. 12 (December 2019): 2502–4. http://dx.doi.org/10.1016/j.jcmg.2018.07.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Salditt, Tim, Markus Osterhoff, Martin Krenkel, Robin N. Wilke, Marius Priebe, Matthias Bartels, Sebastian Kalbfleisch, and Michael Sprung. "Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction." Journal of Synchrotron Radiation 22, no. 4 (June 23, 2015): 867–78. http://dx.doi.org/10.1107/s1600577515007742.

Der volle Inhalt der Quelle
Annotation:
A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meetin
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ding Chaoliang, 丁超亮, 亓协兴 Qi Xiexing та 潘留占 Pan Liuzhan. "时空相干涡旋中的相干开关". Acta Optica Sinica 42, № 20 (2022): 2026004. http://dx.doi.org/10.3788/aos202242.2026004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Camino, Acner, Pengxiao Zang, Arman Athwal, Shuibin Ni, Yali Jia, David Huang, and Yifan Jian. "Sensorless adaptive-optics optical coherence tomographic angiography." Biomedical Optics Express 11, no. 7 (June 24, 2020): 3952. http://dx.doi.org/10.1364/boe.396829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hitzenberger, Christoph K. "Optical coherence tomography in Optics Express [Invited]." Optics Express 26, no. 18 (August 31, 2018): 24240. http://dx.doi.org/10.1364/oe.26.024240.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Dong, Zachary M., Gadi Wollstein, Bo Wang, and Joel S. Schuman. "Adaptive optics optical coherence tomography in glaucoma." Progress in Retinal and Eye Research 57 (March 2017): 76–88. http://dx.doi.org/10.1016/j.preteyeres.2016.11.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Xiao, Peng, Mathias Fink, and Albert Claude Boccara. "Adaptive optics full-field optical coherence tomography." Journal of Biomedical Optics 21, no. 12 (September 22, 2016): 121505. http://dx.doi.org/10.1117/1.jbo.21.12.121505.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Elliott, D. S. "Optical Coherence and Quantum Optics [Book review]." IEEE Spectrum 33, no. 9 (September 1996): 12–13. http://dx.doi.org/10.1109/mspec.1996.535254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Hermann, B., E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal. "Adaptive-optics ultrahigh-resolution optical coherence tomography." Optics Letters 29, no. 18 (September 15, 2004): 2142. http://dx.doi.org/10.1364/ol.29.002142.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Wojtkowski, Maciej, Patrycjusz Stremplewski, Egidijus Auksorius, and Dawid Borycki. "Spatio-Temporal Optical Coherence Imaging – a new tool for in vivo microscopy." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 44. http://dx.doi.org/10.4302/plp.v11i2.905.

Der volle Inhalt der Quelle
Annotation:
Optical Coherence Imaging (OCI) including Optical Coherence Tomography (OCT) and Optical Coherence Microscopy (OCM) uses interferometric detection to generate high-resolution volumetric images of the sample at high speeds. Such capabilities are significant for in vivo imaging, including ophthalmology, brain, intravascular imaging, as well as endoscopic examination. Instrumentation and software development allowed to create many clinical instruments. Nevertheless, most of OCI setups scan the incident light laterally. Hence, OCI can be further extended by wide-field illumination and detection. T
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Geevarghese, Alexi, Gadi Wollstein, Hiroshi Ishikawa, and Joel S. Schuman. "Optical Coherence Tomography and Glaucoma." Annual Review of Vision Science 7, no. 1 (September 15, 2021): 693–726. http://dx.doi.org/10.1146/annurev-vision-100419-111350.

Der volle Inhalt der Quelle
Annotation:
Early detection and monitoring are critical to the diagnosis and management of glaucoma, a progressive optic neuropathy that causes irreversible blindness. Optical coherence tomography (OCT) has become a commonly utilized imaging modality that aids in the detection and monitoring of structural glaucomatous damage. Since its inception in 1991, OCT has progressed through multiple iterations, from time-domain OCT, to spectral-domain OCT, to swept-source OCT, all of which have progressively improved the resolution and speed of scans. Even newer technological advancements and OCT applications, such
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kahnt, Maik, Konstantin Klementiev, Vahid Haghighat, Clemens Weninger, Tomás S. Plivelic, Ann E. Terry, and Alexander Björling. "Measurement of the coherent beam properties at the CoSAXS beamline." Journal of Synchrotron Radiation 28, no. 6 (October 5, 2021): 1948–53. http://dx.doi.org/10.1107/s1600577521009140.

Der volle Inhalt der Quelle
Annotation:
The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012–1013 photons s−1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kahnt, Maik, Konstantin Klementiev, Vahid Haghighat, Clemens Weninger, Tomás S. Plivelic, Ann E. Terry, and Alexander Björling. "Measurement of the coherent beam properties at the CoSAXS beamline." Journal of Synchrotron Radiation 28, no. 6 (October 5, 2021): 1948–53. http://dx.doi.org/10.1107/s1600577521009140.

Der volle Inhalt der Quelle
Annotation:
The CoSAXS beamline at the MAX IV Laboratory is a modern multi-purpose (coherent) small-angle X-ray scattering (CoSAXS) instrument, designed to provide intense and optionally coherent illumination at the sample position, enabling coherent imaging and speckle contrast techniques. X-ray tracing simulations used to design the beamline optics have predicted a total photon flux of 1012–1013 photons s−1 and a degree of coherence of up to 10% at 7.1 keV. The normalized degree of coherence and the coherent flux of this instrument were experimentally determined using the separability of a ptychographic
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Moxham, Thomas E. J., Aaron Parsons, Tunhe Zhou, Lucia Alianelli, Hongchang Wang, David Laundy, Vishal Dhamgaye, Oliver J. L. Fox, Kawal Sawhney, and Alexander M. Korsunsky. "Hard X-ray ptychography for optics characterization using a partially coherent synchrotron source." Journal of Synchrotron Radiation 27, no. 6 (October 16, 2020): 1688–95. http://dx.doi.org/10.1107/s1600577520012151.

Der volle Inhalt der Quelle
Annotation:
Ptychography is a scanning coherent diffraction imaging technique which provides high resolution imaging and complete spatial information of the complex electric field probe and sample transmission function. Its ability to accurately determine the illumination probe has led to its use at modern synchrotrons and free-electron lasers as a wavefront-sensing technique for optics alignment, monitoring and correction. Recent developments in the ptychography reconstruction process now incorporate a modal decomposition of the illuminating probe and relax the restriction of using sources with high spat
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Roberts, Lyle E., Robert L. Ward, Craig Smith, and Daniel A. Shaddock. "Coherent Beam Combining Using an Internally Sensed Optical Phased Array of Frequency-Offset Phase Locked Lasers." Photonics 7, no. 4 (November 28, 2020): 118. http://dx.doi.org/10.3390/photonics7040118.

Der volle Inhalt der Quelle
Annotation:
Coherent beam combining can be used to scale optical power and enable mechanism-free beam steering using an optical phased array. Coherently combining multiple free-running lasers in a leader-follower laser configuration is challenging due to the need to measure and stabilize large and highly dynamic phase differences between them. We present a scalable technique based on frequency-offset phase locking and digitally enhanced interferometry to clone the coherence of multiple lasers without the use of external sampling optics, which has the potential to support both coherent and spectral beam co
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Zhao, Zhiguo, Chaoliang Ding, Yongtao Zhang, and Liuzhan Pan. "Spatial-Temporal Self-Focusing of Partially Coherent Pulsed Beams in Dispersive Medium." Applied Sciences 9, no. 17 (September 3, 2019): 3616. http://dx.doi.org/10.3390/app9173616.

Der volle Inhalt der Quelle
Annotation:
Partially coherent pulsed beams have many applications in pulse shaping, fiber optics, ghost imaging, etc. In this paper, a novel class of partially coherent pulsed (PCP) sources with circular spatial coherence distribution and sinc temporal coherence distribution is introduced. The analytic formula for the spatial-temporal intensity of pulsed beams generated by this kind of source in dispersive media is derived. The evolution behavior of spatial-temporal intensity of the pulsed beams in water and air is investigated, respectively. It is found that the pulsed beams exhibit spatial-temporal sel
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Xue, Chaofan, Xiangyu Meng, Yanqing Wu, Yong Wang, Liansheng Wang, Shumin Yang, Jun Zhao, and Renzhong Tai. "The wave optical whole process design of the soft X-ray interference lithography beamline at SSRF." Journal of Synchrotron Radiation 25, no. 6 (October 26, 2018): 1869–76. http://dx.doi.org/10.1107/s1600577518012833.

Der volle Inhalt der Quelle
Annotation:
A new spatially coherent beamline has been designed and constructed at the Shanghai Synchrotron Radiation Facility. Here, the design of the beamline is introduced and the spatial coherence is analyzed throughout the whole process by wave optics. The simulation results show good spatial coherence at the endstation and have been proven by experiment results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Takahashi, Yoshiyuki, Mitsuharu Iwaya, Yuuki Watanabe, and Manabu Sato. "Optical probe using eccentric optics for optical coherence tomography." Optics Communications 271, no. 1 (March 2007): 285–90. http://dx.doi.org/10.1016/j.optcom.2006.09.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Verstraete, Hans R. G. W., Barry Cense, Rolf Bilderbeek, Michel Verhaegen, and Jeroen Kalkman. "Towards model-based adaptive optics optical coherence tomography." Optics Express 22, no. 26 (December 23, 2014): 32406. http://dx.doi.org/10.1364/oe.22.032406.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Kocaoglu, Omer P., Timothy L. Turner, Zhuolin Liu, and Donald T. Miller. "Adaptive optics optical coherence tomography at 1 MHz." Biomedical Optics Express 5, no. 12 (November 6, 2014): 4186. http://dx.doi.org/10.1364/boe.5.004186.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

史国华, 史国华, Guohua Shi Guohua Shi, 戴云 戴云, Yun Dai Yun Dai, 王玲 王玲, Ling Wang Ling Wang, 丁志华 丁志华, et al. "Adaptive optics optical coherence tomography for retina imaging." Chinese Optics Letters 6, no. 6 (2008): 424–25. http://dx.doi.org/10.3788/col20080606.0424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Nguyen, V. Duc, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman. "Integrated-optics-based swept-source optical coherence tomography." Optics Letters 37, no. 23 (November 16, 2012): 4820. http://dx.doi.org/10.1364/ol.37.004820.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Loudon, R. "Coherence and Quantum Optics V." Optica Acta: International Journal of Optics 33, no. 1 (January 1986): 13. http://dx.doi.org/10.1080/716099692.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Petrascheck, D. "Coherence lengths and neutron optics." Physical Review B 35, no. 13 (May 1, 1987): 6549–53. http://dx.doi.org/10.1103/physrevb.35.6549.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Petrascheck, D. "On coherence in crystal optics." Physica B+C 151, no. 1-2 (July 1988): 171–75. http://dx.doi.org/10.1016/0378-4363(88)90162-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Harris, S. E., G. Y. Yin, M. Jain, H. Xia, and A. J. Merriam. "Nonlinear optics at maximum coherence." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 355, no. 1733 (December 15, 1997): 2291–304. http://dx.doi.org/10.1098/rsta.1997.0127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Baltă, Florian, Irina-Elena Cristescu, Andrada-Elena Mirescu, George Baltă, Mihail Zemba, and Ioana Teodora Tofolean. "Investigation of Retinal Microcirculation in Diabetic Patients Using Adaptive Optics Ophthalmoscopy and Optical Coherence Angiography." Journal of Diabetes Research 2022 (January 19, 2022): 1–9. http://dx.doi.org/10.1155/2022/1516668.

Der volle Inhalt der Quelle
Annotation:
The current research approaches the retinal microvasculature of healthy volunteers (17 subjects), patients with diabetes mellitus without retinopathy (19 subjects), and of diabetic patients with nonproliferative (17 subjects) and proliferative (21 subjects) diabetic retinopathy, by using adaptive optics ophthalmoscopy and optical coherence ophthalmoscopy angiography. For each imaging technique, several vascular parameters have been calculated in order to achieve a comparative analysis of these imaging biomarkers between the four studied groups. The results suggest that diabetic patients with o
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Graves, Jennifer S. "Optical Coherence Tomography in Multiple Sclerosis." Seminars in Neurology 39, no. 06 (December 2019): 711–17. http://dx.doi.org/10.1055/s-0039-1700528.

Der volle Inhalt der Quelle
Annotation:
AbstractOptical coherence tomography (OCT) grew out of a convergence of rapid advancements in femtoseconds optics research and fiber optic commercial technology. The basic concept of OCT is to “see” into tissues using light echoes, analogous to the sound echoes of ultrasonography. Multiple A-scans are assembled into a B-scan two-dimensional image of the tissue of interest. Retina is an ideal tissue for evaluation by OCT, since the eye is designed to minimize light scattering through the anterior chamber and vitreous. OCT has had a significant impact on the field of multiple sclerosis, where it
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Abouraddy, Ayman F., Aristide Dogariu, and Bahaa E. A. Saleh. "Polarization coherence theorem: comment." Optica 6, no. 6 (June 20, 2019): 829. http://dx.doi.org/10.1364/optica.6.000829.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Eberly, J. H., X. F. Qian, and A. N. Vamivakas. "Polarization coherence theorem: reply." Optica 6, no. 6 (June 20, 2019): 831. http://dx.doi.org/10.1364/optica.6.000831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Piquero, G., M. Santarsiero, R. Martínez-Herrero, J. C. G. de Sande, M. Alonzo, and F. Gori. "Partially coherent sources with radial coherence." Optics Letters 43, no. 10 (May 14, 2018): 2376. http://dx.doi.org/10.1364/ol.43.002376.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Steinberg, Shlomi, Pradeep Sen, and Ling-Qi Yan. "Towards practical physical-optics rendering." ACM Transactions on Graphics 41, no. 4 (July 2022): 1–24. http://dx.doi.org/10.1145/3528223.3530119.

Der volle Inhalt der Quelle
Annotation:
Physical light transport (PLT) algorithms can represent the wave nature of light globally in a scene, and are consistent with Maxwell's theory of electromagnetism. As such, they are able to reproduce the wave-interference and diffraction effects of real physical optics. However, the recent works that have proposed PLT are too expensive to apply to real-world scenes with complex geometry and materials. To address this problem, we propose a novel framework for physical light transport based on several key ideas that actually makes PLT practical for complex scenes. First, we restrict the spatial
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Korotkova, Olga, and Franco Gori. "Introduction to the Special Issue on Structured Light Coherence." Photonics 8, no. 10 (October 19, 2021): 457. http://dx.doi.org/10.3390/photonics8100457.

Der volle Inhalt der Quelle
Annotation:
Statistical optics, and optical coherence in particular, developed into a stand-alone branch of physical optics in the second half of the 20th century and has found a number of ground-breaking applications in astronomical measurements, medical diagnostics, environmental remote sensing, and wireless communications [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Zhu, Zhongzhu, Han Xu, Lingfei Hu, Ming Li, Peng Liu, Yuhui Dong, and Liang Zhou. "A wave optics model for the effect of partial coherence on coherent diffractive imaging." Journal of Synchrotron Radiation 28, no. 2 (January 14, 2021): 499–504. http://dx.doi.org/10.1107/s1600577520015684.

Der volle Inhalt der Quelle
Annotation:
With the development of fourth-generation synchrotron sources, coherent diffractive imaging (CDI) will be a mainstream method for 3D structure determination at nanometre resolution. The partial coherence of incident X-rays plays a critical role in the reconstructed image quality. Here a wave optics model is proposed to analyze the effect of partial coherence on CDI for an actual beamline layout, based on the finite size of the source and the influence of the optics on the wavefront. Based on this model, the light field distribution at any plane, the coherence between any two points on this pla
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wang, Jianfeng, Eric J. Chaney, Edita Aksamitiene, Marina Marjanovic, and Stephen A. Boppart. "Computational adaptive optics for polarization-sensitive optical coherence tomography." Optics Letters 46, no. 9 (April 21, 2021): 2071. http://dx.doi.org/10.1364/ol.418637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ruiz-Lopera, Sebastián, René Restrepo, Carlos Cuartas-Vélez, Brett E. Bouma, and Néstor Uribe-Patarroyo. "Computational adaptive optics in phase-unstable optical coherence tomography." Optics Letters 45, no. 21 (October 27, 2020): 5982. http://dx.doi.org/10.1364/ol.401283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kocaoglu, Omer P., R. Daniel Ferguson, Ravi S. Jonnal, Zhuolin Liu, Qiang Wang, Daniel X. Hammer, and Donald T. Miller. "Adaptive optics optical coherence tomography with dynamic retinal tracking." Biomedical Optics Express 5, no. 7 (June 17, 2014): 2262. http://dx.doi.org/10.1364/boe.5.002262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Apostol, A., and A. Dogariu. "Near-Field Optics: Coherence Properties of Optical Near Fields." Optics and Photonics News 14, no. 12 (December 1, 2003): 22. http://dx.doi.org/10.1364/opn.14.12.000022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Jian, Yifan, Robert J. Zawadzki, and Marinko V. Sarunic. "Adaptive optics optical coherence tomography forin vivomouse retinal imaging." Journal of Biomedical Optics 18, no. 5 (May 3, 2013): 056007. http://dx.doi.org/10.1117/1.jbo.18.5.056007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Hradil, Zdeněk, Jaroslav Řeháček, Luis Sánchez-Soto, and Berthold-Georg Englert. "Quantum Fisher information with coherence." Optica 6, no. 11 (November 14, 2019): 1437. http://dx.doi.org/10.1364/optica.6.001437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Liu, Zhenglin, Lipeng Wan, Yujie Zhou, Yao Zhang, and Daomu Zhao. "Progress on Studies of Beams Carrying Twist." Photonics 8, no. 4 (March 26, 2021): 92. http://dx.doi.org/10.3390/photonics8040092.

Der volle Inhalt der Quelle
Annotation:
Optical twist has always been a hot spot in optics since it was discovered in 1993. Twisted beams can be generated by introducing the twist phase into partially coherent beams, or by introducing the twisting phase into anisotropic beams, whose spectral density and degree of coherence will spontaneously rotate during propagation. Unlike conventional beams, twisted beams have unique properties and can be used in many applications, such as optical communications, laser material processing, and particle manipulation. In this paper, we present a review of recent developments on phase studies of bea
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Jain, Maneesh, Hui Xia, Guang-Yu Yin, Andrew Merriam, and S. E. Harris. "Nonlinear Optics Using Atomic Coherence Effects." Optics and Photonics News 7, no. 12 (December 1, 1996): 45. http://dx.doi.org/10.1364/opn.7.12.000045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Lavoine, J. P., A. Boeglin, S. H. Lin, and A. A. Villaeys. "Coherence-population interdependence in nonlinear optics." Physical Review A 38, no. 6 (September 1, 1988): 2896–909. http://dx.doi.org/10.1103/physreva.38.2896.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!