Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „COLLABORATIVE FILTERING ALGORITHMS“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "COLLABORATIVE FILTERING ALGORITHMS" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "COLLABORATIVE FILTERING ALGORITHMS"
Ben Kharrat, Firas, Aymen Elkhleifi und Rim Faiz. „Improving Collaborative Filtering Algorithms“. International Journal of Knowledge Society Research 7, Nr. 3 (Juli 2016): 99–118. http://dx.doi.org/10.4018/ijksr.2016070107.
Der volle Inhalt der QuelleCacheda, Fidel, Víctor Carneiro, Diego Fernández und Vreixo Formoso. „Comparison of collaborative filtering algorithms“. ACM Transactions on the Web 5, Nr. 1 (Februar 2011): 1–33. http://dx.doi.org/10.1145/1921591.1921593.
Der volle Inhalt der QuelleZhou, Li Juan, Ming Sheng Xu und Hai Jun Geng. „Improved Attack-Resistant Collaborative Filtering Algorithm“. Key Engineering Materials 460-461 (Januar 2011): 439–44. http://dx.doi.org/10.4028/www.scientific.net/kem.460-461.439.
Der volle Inhalt der QuelleWu, Xinyi. „Comparison Between Collaborative Filtering and Content-Based Filtering“. Highlights in Science, Engineering and Technology 16 (10.11.2022): 480–89. http://dx.doi.org/10.54097/hset.v16i.2627.
Der volle Inhalt der QuelleJalili, Mahdi. „A Survey of Collaborative Filtering Recommender Algorithms and Their Evaluation Metrics“. International Journal of System Modeling and Simulation 2, Nr. 2 (30.06.2017): 14. http://dx.doi.org/10.24178/ijsms.2017.2.2.14.
Der volle Inhalt der QuelleZhang, Zhen, Taile Peng und Ke Shen. „Overview of Collaborative Filtering Recommendation Algorithms“. IOP Conference Series: Earth and Environmental Science 440 (19.03.2020): 022063. http://dx.doi.org/10.1088/1755-1315/440/2/022063.
Der volle Inhalt der QuelleJing, Hui. „Application of Improved K-Means Algorithm in Collaborative Recommendation System“. Journal of Applied Mathematics 2022 (22.12.2022): 1–10. http://dx.doi.org/10.1155/2022/2213173.
Der volle Inhalt der QuelleJiang, Tong Qiang, und Wei Lu. „Improved Slope One Algorithm Based on Time Weight“. Applied Mechanics and Materials 347-350 (August 2013): 2365–68. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.2365.
Der volle Inhalt der QuelleLi, Xiaofeng, und Dong Li. „An Improved Collaborative Filtering Recommendation Algorithm and Recommendation Strategy“. Mobile Information Systems 2019 (07.05.2019): 1–11. http://dx.doi.org/10.1155/2019/3560968.
Der volle Inhalt der QuelleKourtiche, Ali, und Mohamed Merabet. „Collaborative Filtering Technical Comparison in Implicit Data“. International Journal of Knowledge-Based Organizations 11, Nr. 4 (Oktober 2021): 1–24. http://dx.doi.org/10.4018/ijkbo.2021100101.
Der volle Inhalt der QuelleDissertationen zum Thema "COLLABORATIVE FILTERING ALGORITHMS"
Hansjons, Vegeborn Victor, und Hakim Rahmani. „Comparison and Improvement Of Collaborative Filtering Algorithms“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209468.
Der volle Inhalt der QuelleRekommendationssystem är ett ämne som många datatekniker har forskat inom. Med dagens e-handel och Internetåtkomst, så försöker företag att maximera sina vinster genom att utnyttja diverse rekommendationsalgoritmer. En metodik som används i sådana system är Collaborative Filtering. Syftet med denna uppsats är att jämföra fyra algoritmer, alla baserade på Collaborati- ve Filtering, vilket är k-Nearest-Neighbour, Slope One, Single Value Decomposition och Average Least Square, i syfte att ta reda på vilken algoritm som producerar den bästa be- tygsättningen. Uppsatsen kommer även använda sig av två olika matematiska modeller, Aritmetisk Median och Viktad Aritmetisk Median, för att ta reda på om dom kan förbättra betygsättningen. Single Value Decomposition presterade bäst medan Average Least Square presterade sämst av de fyra algoritmerna. Däremot presterade Aritmetiska Median en aning bättre än Single Value Decomposition och Viktad Aritmetisk Median presterade sämst.
Anne, Patricia Anne. „Semantically and Contextually-Enhanced Collaborative Filtering Recommender Algorithms“. Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516289.
Der volle Inhalt der QuelleCasey, Walker Evan. „Scalable Collaborative Filtering Recommendation Algorithms on Apache Spark“. Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/873.
Der volle Inhalt der QuelleRault, Antoine. „User privacy in collaborative filtering systems“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S019/document.
Der volle Inhalt der QuelleRecommendation systems try to infer their users’ interests in order to suggest items relevant to them. These systems thus offer a valuable service to users in that they automatically filter non-relevant information, which avoids the nowadays common issue of information overload. This is why recommendation systems are now popular, if not pervasive in some domains such as the World Wide Web. However, an individual’s interests are personal and private data, such as one’s political or religious orientation. Therefore, recommendation systems gather private data and their widespread use calls for privacy-preserving mechanisms. In this thesis, we study the privacy of users’ interests in the family of recommendation systems called Collaborative Filtering (CF) ones. Our first contribution is Hide & Share, a novel privacy-preserving similarity mechanism for the decentralized computation of K-Nearest-Neighbor (KNN) graphs. It is a lightweight mechanism designed for decentralized (a.k.a. peer-to-peer) user-based CF systems, which rely on KNN graphs to provide recommendations. Our second contribution also applies to user-based CF systems, though it is independent of their architecture. This contribution is two-fold: first we evaluate the impact of an active Sybil attack on the privacy of a target user’s profile of interests, and second we propose a counter-measure. This counter-measure is 2-step, a novel similarity metric combining a good precision, in turn allowing for good recommendations,with high resilience to said Sybil attack
Strunjas, Svetlana. „Algorithms and Models for Collaborative Filtering from Large Information Corpora“. University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1220001182.
Der volle Inhalt der QuelleAlmosallam, Ibrahim Ahmad Shang Yi. „A new adaptive framework for collaborative filtering prediction“. Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5630.
Der volle Inhalt der QuelleThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on August 22, 2008) Includes bibliographical references.
Salam, Patrous Ziad, und Safir Najafi. „Evaluating Prediction Accuracy for Collaborative Filtering Algorithms in Recommender Systems“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186456.
Der volle Inhalt der QuelleNARAYANASWAMY, SHRIRAM. „A CONCEPT-BASED FRAMEWORK AND ALGORITHMS FOR RECOMMENDER SYSTEMS“. University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1186165016.
Der volle Inhalt der QuelleSvebrant, Henrik, und John Svanberg. „A comparative study of the conventional item-based collaborative filtering and the Slope One algorithms for recommender systems“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186449.
Der volle Inhalt der QuelleSafran, Mejdl Sultan. „EFFICIENT LEARNING-BASED RECOMMENDATION ALGORITHMS FOR TOP-N TASKS AND TOP-N WORKERS IN LARGE-SCALE CROWDSOURCING SYSTEMS“. OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1511.
Der volle Inhalt der QuelleBücher zum Thema "COLLABORATIVE FILTERING ALGORITHMS"
Nadler, Anthony M. Popularizing News 2.0. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040146.003.0005.
Der volle Inhalt der QuelleBuchteile zum Thema "COLLABORATIVE FILTERING ALGORITHMS"
Nisgav, Aviv, und Boaz Patt-Shamir. „Improved Collaborative Filtering“. In Algorithms and Computation, 425–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25591-5_44.
Der volle Inhalt der QuelleChang, Edward Y. „Parallel Algorithms for Collaborative Filtering“. In Algorithmic Aspects in Information and Management, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02158-9_2.
Der volle Inhalt der QuelleCunha, Tiago, Carlos Soares und André C. P. L. F. de Carvalho. „Selecting Collaborative Filtering Algorithms Using Metalearning“. In Machine Learning and Knowledge Discovery in Databases, 393–409. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_25.
Der volle Inhalt der QuelleKluver, Daniel, Michael D. Ekstrand und Joseph A. Konstan. „Rating-Based Collaborative Filtering: Algorithms and Evaluation“. In Social Information Access, 344–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90092-6_10.
Der volle Inhalt der QuellePan, Lilin, und Jianfei Shao. „Review of Improved Collaborative Filtering Recommendation Algorithms“. In Advances in Intelligent Systems and Computing, 21–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1843-7_3.
Der volle Inhalt der QuelleCunha, Tiago, Carlos Soares und André C. P. L. F. de Carvalho. „Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers“. In Discovery Science, 189–203. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67786-6_14.
Der volle Inhalt der QuelleCai, Xianggao, Zhanpeng Xu, Guoming Lai, Chengwei Wu und Xiaola Lin. „GPU-Accelerated Restricted Boltzmann Machine for Collaborative Filtering“. In Algorithms and Architectures for Parallel Processing, 303–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33078-0_22.
Der volle Inhalt der QuelleVerhaegh, Wim F. J., Aukje E. M. van Duijnhoven, Pim Tuyls und Jan Korst. „Privacy Protection in Collaborative Filtering by Encrypted Computation“. In Intelligent Algorithms in Ambient and Biomedical Computing, 169–84. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4995-1_11.
Der volle Inhalt der QuelleAdán-Coello, Juan Manuel, und Carlos Miguel Tobar. „Using Collaborative Filtering Algorithms for Predicting Student Performance“. In Electronic Government and the Information Systems Perspective, 206–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44159-7_15.
Der volle Inhalt der QuellePapagelis, Manos, Ioannis Rousidis, Dimitris Plexousakis und Elias Theoharopoulos. „Incremental Collaborative Filtering for Highly-Scalable Recommendation Algorithms“. In Lecture Notes in Computer Science, 553–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11425274_57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "COLLABORATIVE FILTERING ALGORITHMS"
Kharrat, Firas Ben, Aymen Elkhleifi und Rim Faiz. „Improving Collaborative Filtering Algorithms“. In 2016 12th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2016. http://dx.doi.org/10.1109/skg.2016.024.
Der volle Inhalt der QuelleYaqiu Liu, Zhendi Wang und Man Li. „Ratio-based collaborative filtering algorithms“. In 2008 2nd International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA). IEEE, 2008. http://dx.doi.org/10.1109/isscaa.2008.4776258.
Der volle Inhalt der QuelleKleinberg, Jon, und Mark Sandler. „Convergent algorithms for collaborative filtering“. In the 4th ACM conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/779928.779929.
Der volle Inhalt der QuellePatil, Vandana A., und Lata Ragha. „Comparing performance of collaborative filtering algorithms“. In 2012 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, 2012. http://dx.doi.org/10.1109/iccict.2012.6398206.
Der volle Inhalt der QuelleSarwar, Badrul, George Karypis, Joseph Konstan und John Reidl. „Item-based collaborative filtering recommendation algorithms“. In the tenth international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/371920.372071.
Der volle Inhalt der Quelle„Comparative Study of Collaborative Filtering Algorithms“. In International Conference on Knowledge Discovery and Information Retrieval. SciTePress - Science and and Technology Publications, 2012. http://dx.doi.org/10.5220/0004104001320137.
Der volle Inhalt der QuelleMatuszyk, Pawel, und Myra Spiliopoulou. „Predicting the Performance of Collaborative Filtering Algorithms“. In the 4th International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2611040.2611054.
Der volle Inhalt der Quelle„Using Collaborative Filtering Algorithms as eLearning Tools“. In 2009 42nd Hawaii International Conference on System Sciences. IEEE, 2009. http://dx.doi.org/10.1109/hicss.2009.492.
Der volle Inhalt der QuelleLiu, Dong. „A Study on Collaborative Filtering Recommendation Algorithms“. In 2018 IEEE 4th International Conference on Computer and Communications (ICCC). IEEE, 2018. http://dx.doi.org/10.1109/compcomm.2018.8780979.
Der volle Inhalt der QuelleCöster, Rickard, und Martin Svensson. „Inverted file search algorithms for collaborative filtering“. In the 25th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/564376.564420.
Der volle Inhalt der Quelle