Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Combustion-Deflagration-Detonation transition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Combustion-Deflagration-Detonation transition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Combustion-Deflagration-Detonation transition"
Debnath, Pinku, und Krishna Murari Pandey. „Computational Study of Deflagration to Detonation Transition in Pulse Detonation Engine Using Shchelkin Spiral“. Applied Mechanics and Materials 772 (Juli 2015): 136–40. http://dx.doi.org/10.4028/www.scientific.net/amm.772.136.
Der volle Inhalt der QuelleMa, Hu, Zhenjuan Xia, Wei Gao, Changfei Zhuo und Dong Wang. „Numerical simulation of the deflagration-to-detonation transition of iso-octane vapor in an obstacle-filled tube“. International Journal of Spray and Combustion Dynamics 10, Nr. 3 (13.02.2018): 244–59. http://dx.doi.org/10.1177/1756827718758047.
Der volle Inhalt der QuelleDavis, Scott, Derek Engel, Kees van Wingerden und Erik Merilo. „Can gases behave like explosives: Large-scale deflagration to detonation testing“. Journal of Fire Sciences 35, Nr. 5 (September 2017): 434–54. http://dx.doi.org/10.1177/0734904117715648.
Der volle Inhalt der QuelleQiu, Hua, Zheng Su und Cha Xiong. „Experimental investigation on multi-cycle two-phase spiral pulse detonation tube of two configurations“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, Nr. 11 (04.12.2018): 4166–75. http://dx.doi.org/10.1177/0954410018817455.
Der volle Inhalt der QuelleSmirnov, Nickolay, und Valeriy Nikitin. „Three-dimensional simulation of combustion, detonation and deflagration to detonation transition processes“. MATEC Web of Conferences 209 (2018): 00003. http://dx.doi.org/10.1051/matecconf/201820900003.
Der volle Inhalt der QuelleAdoghe, Joseph, Weiming Liu, Jonathan Francis und Akinola Adeniyi. „Investigation into mechanisms of deflagration-to-detonation using Direct Numerical Simulations“. E3S Web of Conferences 128 (2019): 03002. http://dx.doi.org/10.1051/e3sconf/201912803002.
Der volle Inhalt der QuelleCojocea, Andrei Vlad, Ionuț Porumbel, Mihnea Gall und Tudor Cuciuc. „Experimental Investigations on the Impact of Hydrogen Injection Apertures in Pulsed Detonation Combustor“. Energies 17, Nr. 19 (01.10.2024): 4918. http://dx.doi.org/10.3390/en17194918.
Der volle Inhalt der QuelleHuang, Xiaolong, Ning Li und Yang Kang. „Research on Optical Diagnostic Method of PDE Working Status Based on Visible and Near-Infrared Radiation Characteristics“. Energies 14, Nr. 18 (10.09.2021): 5703. http://dx.doi.org/10.3390/en14185703.
Der volle Inhalt der QuelleFrolov, Sergey M., Igor O. Shamshin, Viktor S. Aksenov, Vladislav S. Ivanov und Pavel A. Vlasov. „Ion Sensors for Pulsed and Continuous Detonation Combustors“. Chemosensors 11, Nr. 1 (01.01.2023): 33. http://dx.doi.org/10.3390/chemosensors11010033.
Der volle Inhalt der QuelleBrailovsky, I., L. Kagan und G. Sivashinsky. „Combustion waves in hydraulically resisted systems“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, Nr. 1960 (13.02.2012): 625–46. http://dx.doi.org/10.1098/rsta.2011.0341.
Der volle Inhalt der QuelleDissertationen zum Thema "Combustion-Deflagration-Detonation transition"
Chapin, David Michael. „A Study of Deflagration To Detonation Transition In a Pulsed Detonation Engine“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7526.
Der volle Inhalt der QuelleHamon, Émilien. „Endommagement, fragmentation et combustion d’un matériau explosif comprimé“. Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2025. http://www.theses.fr/2025ISAB0003.
Der volle Inhalt der QuelleIn the context of the safety of pyrotechnic structures, it is important to evaluate by simulation the level of reaction reached during thermal or mechanical aggressions (impact). Nowadays, there is no unified approach approved by the international scientific community to describe the complex process leading to violent reactions such as the Combustion-Deflagration-Detonation transition (CoDDT). The objective of this thesis is to study the influence of the damage, resulting from low velocity impact damage on the combustion of a pressed explosive.First, we will study the influence of mechanical loading on the combustion behavior of our material. We will show that the burning surface plays an important role in the TCoDD phenomenon, and we will seek to determine this surface from manometer bomb tests. Next, we will quantify the damage within the microstructure (crack density, porosity, etc.) following mechanical loading. Finally, we will model the mechanical behavior of our material and relate its damage to the crack density influencing material combustion
Charignon, Camille. „Transition Déflagration-Détonation dans les Supernovae Thermonucléaires“. Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00874701.
Der volle Inhalt der QuelleKristoffersen, Kjetil. „Gas explosions in process pipes“. Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-235.
Der volle Inhalt der QuelleIn this thesis, gas explosions inside pipes are considered. Laboratory experiments and numerical simulations are the basis of the thesis. The target of the work was to develop numerical models that could predict accidental gas explosions inside pipes.
Experiments were performed in circular steel pipes, with an inner diameter of 22.3 mm, and a plexiglass pipe, with an inner diameter of 40 mm. Propane, acetylene and hydrogen at various equivalence ratios in air were used. Pressure was recorded by Kistler pressure transducers and flame propagation was captured by photodiodes, a SLR camera and a high-speed camera. The experiments showed that acoustic oscillations would occur in the pipes, and that the frequencies of these oscillations are determined by the pipe length. Several inversions of the flame front can occur during the flame propagation in a pipe. These inversions are appearing due to quenching of the flame front at the pipe wall and due to interactions of the flame front with the longitudinal pressure waves in the pipe. Transition to detonation was achieved in acetylene-air mixtures in a 5 m steel pipe with 4 small obstructions.
Simulations of the flame propagation in smooth pipes were performed with an 1D MATLAB version of the Random Choice Method (RCMLAB). Methods for estimation of quasi 1D burning velocities and of pipe outlet conditions from experimental pressure data were implemented into this code. The simulated pressure waves and flame propagation were compared to the experimental results and there are good agreements between the results.
Simulations were also performed with the commercial CFD code FLACS. They indicated that to properly handle the longitudinal pressure oscillations in pipes, at least 7 grid cells in each direction of the pipe cross-section and a Courant number of maximum 1 should be used. It was shown that the current combustion model in FLACS gave too high flame speeds initially for gas explosions in a pipe with an inner width of 40 mm.
Gray, Joshua Allen Terry [Verfasser], Christian Oliver [Akademischer Betreuer] Paschereit, Jonas Pablo [Akademischer Betreuer] Moeck, Christian Oliver [Gutachter] Paschereit, Jonas Pablo [Gutachter] Moeck und Ephraim [Gutachter] Gutmark. „Reduction in the run-up distance for the deflagration-to-detonation transition and applications to pulse detonation combustion / Joshua Allen Terry Gray ; Gutachter: Christian Oliver Paschereit, Jonas Pablo Moeck, Ephraim Gutmark ; Christian Oliver Paschereit, Jonas Pablo Moeck“. Berlin : Technische Universität Berlin, 2018. http://d-nb.info/1156180090/34.
Der volle Inhalt der QuelleSchild, Ilissa Brooke. „Influence of Spark Energy, Spark Number, and Flow Velocity on Detonation Initiation in a Hydrocarbon-fueled PDE“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7527.
Der volle Inhalt der QuelleNicoloso, Julien. „Combustion confinée d'explosif condensé pour l'accélaration de projectile. Application en pyrotechnie spatiale“. Phd thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique - Poitiers, 2014. http://tel.archives-ouvertes.fr/tel-01060036.
Der volle Inhalt der QuelleLindstedt, R. Peter. „Deflagration to detonation transition in mixtures containing LNG/LPG constituents“. Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37764.
Der volle Inhalt der QuelleMyers, Charles B. „Initiation mechanisms of low-loss swept-ramp obstacles for deflagration to detonation transition in pulse detonation combustors“. Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Dec/09Dec%5FMyers.pdf.
Der volle Inhalt der QuelleThesis Advisor(s): Brophy, Christopher M. Second Reader: Hobson, Garth V. "December 2009." Description based on title screen as viewed on January 28, 2010. Author(s) subject terms: Pulse Detonation Combustors, PDC, Pulse Detonation Engines, PDE, PDE ignition, PDE initiation, low-loss obstacles, ramp, swept ramp, DDT, DDT initiation. Includes bibliographical references (p. 89-90). Also available in print.
Bhat, Abhishek R. „Experimental and Computational Studies on Deflagration-to-Detonation Transition and its Effect on the Performance of PDE“. Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3181.
Der volle Inhalt der QuelleBuchteile zum Thema "Combustion-Deflagration-Detonation transition"
Liberman, Michael A. „Flame Acceleration and Deflagration-To-Detonation Transition“. In Combustion Physics, 415–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85139-2_15.
Der volle Inhalt der Quelle„Transient Combustion of Solid Propellants: An Important Aspect of Deflagration-to-Detonation Transition“. In Nonsteady Burning and Combustion Stability of Solid Propellants, 441–64. Washington DC: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/5.9781600866159.0441.0464.
Der volle Inhalt der Quelle„Deflagration-to-Detonation Transition in Reactive Granular Materials“. In Numerical Approaches to Combustion Modeling, 481–512. Washington DC: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/5.9781600866081.0481.0512.
Der volle Inhalt der QuelleSmirnov, N. N., V. F. Nikitin, V. M. Shevtsova und J. C. Legros. „THE ROLE OF GEOMETRICAL FACTORS IN DEFLAGRATION-TO-DETONATION TRANSITION“. In Combustion Processes in Propulsion, 305–14. Elsevier, 2006. http://dx.doi.org/10.1016/b978-012369394-5/50032-9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Combustion-Deflagration-Detonation transition"
Zangiev, A. E., V. S. Ivanov und S. M. Frolov. „NUMERICAL SIMULATION OF DEFLAGRATION-TO-DETONATION TRANSITION IN A PULSED DETONATION ENGINE“. In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-31.
Der volle Inhalt der QuelleHwang, Eduardo, Felipe Porto Ribeiro und Jian Su. „CFD Simulation of Deflagration to Detonation Transition for Nuclear Safety“. In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-31010.
Der volle Inhalt der QuelleFROLOV, S. M., V. S. AKSENOV und I. O. SHAMSHIN. „DEFLAGRATION-TO-DETONATION TRANSITION IN A STRATIFIED SYSTEM “GASEOUS OXYGEN-LIQUID FILM OF N-DECANE”“. In 8TH INTERNATIONAL SYMPOSIUM ON NONEQUILIBRIUM PROCESSES, PLASMA, COMBUSTION, AND ATMOSPHERIC PHENOMENA. TORUS PRESS, 2020. http://dx.doi.org/10.30826/nepcap2018-2-30.
Der volle Inhalt der QuelleRen, Ke, Alexei Kotchourko, Alexander Lelyakin und Thomas Jordan. „Numerical Reproduction of DDT in Small Scale Channels“. In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-67150.
Der volle Inhalt der QuelleFROLOV, S. M., V. I. ZVEGINTSEV, V. S. AKSENOV, I. V. BILERA, M. V. KAZACHENKO, I. O. SHAMSHIN, P. A. GUSEV und M. S. BELOTSERKOVSKAYA 3,8. „RANKING OF FUEL–AIR MIXTURES IN TERMS OF THEIR PROPENSITY TO DEFLAGRATION-TO-DETONATION TRANSITION“. In International Colloquium on Pulsed and Continuous Detonations. TORUS PRESS, 2021. http://dx.doi.org/10.30826/icpcd12b02.
Der volle Inhalt der QuelleHasti, Veeraraghava Raju, und Reetesh Ranjan. „Numerical Investigation of Wave Dynamics During Mode Transition in a Hydrogen-Fueled Rotating Detonation Engine Combustor“. In ASME 2024 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2024. https://doi.org/10.1115/imece2024-145858.
Der volle Inhalt der QuelleSchildberg, Hans-Peter. „Experimental Determination of the Static Equivalent Pressures of Detonative Decompositions of Acetylene in Long Pipes and Chapman-Jouguet Pressure Ratio“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28197.
Der volle Inhalt der QuelleHabicht, Fabian E., Fatma C. Yücel, Niclas Hanraths, Neda Djordjevic und Christian Oliver Paschereit. „Lean Operation of a Pulse Detonation Combustor by Fuel Stratification“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-16169.
Der volle Inhalt der QuelleSchildberg, Hans-Peter. „Experimental Determination of the Static Equivalent Pressures of Detonative Explosions of Ethylene/O2/N2-Mixtures and Cyclohexane/O2/N2-Mixtures in Long and Short Pipes“. In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84493.
Der volle Inhalt der QuelleZou, Zhiqiang, Jian Deng und Yu Zhang. „CFD Analysis on Hydrogen Risk in Subcompartment of the Containment“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16171.
Der volle Inhalt der Quelle