Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Computed Torque Control“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Computed Torque Control" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Computed Torque Control"
YOSHIKAWA, Tsuneo. „Digital control by computed torque method.“ Journal of the Robotics Society of Japan 7, Nr. 3 (1989): 237–42. http://dx.doi.org/10.7210/jrsj.7.3_237.
Der volle Inhalt der QuelleYOSHIDA, Koichi, Takayuki YAMADA, Takeshi TSUJIMURA und Tetsuro YABUTA. „Computed Torque Method of Manipulator Using Disturbance Compensation Control“. Transactions of the Society of Instrument and Control Engineers 27, Nr. 3 (1991): 341–48. http://dx.doi.org/10.9746/sicetr1965.27.341.
Der volle Inhalt der QuelleLammerts, I. M. M., F. E. Veldpaus, M. J. G. Van de Molengraft und J. J. Kok. „Adaptive Computed Reference Computed Torque Control of Flexible Robots“. Journal of Dynamic Systems, Measurement, and Control 117, Nr. 1 (01.03.1995): 31–36. http://dx.doi.org/10.1115/1.2798520.
Der volle Inhalt der QuelleChung, Wen-Yeuan, und Kenneth J. Waldron. „An Integrated Control Strategy for Multifingered Systems“. Journal of Dynamic Systems, Measurement, and Control 117, Nr. 1 (01.03.1995): 37–42. http://dx.doi.org/10.1115/1.2798521.
Der volle Inhalt der QuelleLee, Jyh-Jone, und Lung-Wen Tsai. „Torque Resolver Design for Tendon-Driven Manipulators“. Journal of Mechanical Design 115, Nr. 4 (01.12.1993): 877–83. http://dx.doi.org/10.1115/1.2919282.
Der volle Inhalt der QuelleRahmani, Mehran, und Ahmad Ghanbari. „Computed Torque Control of a Caterpillar Robot Manipulator Using Neural Network“. Advanced Engineering Forum 15 (Februar 2016): 106–18. http://dx.doi.org/10.4028/www.scientific.net/aef.15.106.
Der volle Inhalt der QuelleLima Costa, Thamiris, Fabian Andres Lara-Molina, Aldemir Aparecido Cavalini Junior und Erik Taketa. „Robust H∞ Computed torque Control for Manipulators“. IEEE Latin America Transactions 16, Nr. 2 (Februar 2018): 398–407. http://dx.doi.org/10.1109/tla.2018.8327392.
Der volle Inhalt der QuelleShao, Bing, En Tao Yuan und Zhong Hai Yu. „The Real-Time Control of Space Robot by Computed Torque Control Law“. Advanced Materials Research 225-226 (April 2011): 978–81. http://dx.doi.org/10.4028/www.scientific.net/amr.225-226.978.
Der volle Inhalt der QuelleGoldenberg, A. A., J. A. Apkarian und H. W. Smith. „An Approach to Adaptive Control of Robot Manipulators Using the Computed Torque Technique“. Journal of Dynamic Systems, Measurement, and Control 111, Nr. 1 (01.03.1989): 1–8. http://dx.doi.org/10.1115/1.3153014.
Der volle Inhalt der QuelleKang, Bong Soo, Soo Hyun Kim, Yoon Keun Kwak und Craig C. Smith. „Robust Tracking Control of a Direct Drive Robot“. Journal of Dynamic Systems, Measurement, and Control 121, Nr. 2 (01.06.1999): 261–69. http://dx.doi.org/10.1115/1.2802464.
Der volle Inhalt der QuelleDissertationen zum Thema "Computed Torque Control"
Sankaran, Jayavel. „Real-time computed torque control of flexible-joint robots“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28868.pdf.
Der volle Inhalt der QuelleVALLE, CARLOS MAGNO CATHARINO OLSSON. „COMPUTED-TORQUE CONTROL OF A SIMULATED BIPEDAL ROBOT WITH LOCOMOTION BY REINFORCEMENT LEARNING“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27798@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Esta dissertação apresenta o desenvolvimento de um controle híbrido de um robô do tipo humanoide Atlas em regime de locomoção estática para a frente. Nos experimentos faz-se uso do ambiente de simulação Gazebo, que permite uma modelagem precisa do robô. O sistema desenvolvido é composto pela modelagem da mecânica do robô, incluindo as equações da dinâmica que permitem o controle das juntas por torque computado, e pela determinação das posições que as juntas devem assumir. Isto é realizado por agentes que utilizam o algoritmo de aprendizado por reforço Q-Learning aproximado para planejar a locomoção do robô. A definição do espaço de estados, que compõe cada agente, difere da cartesiana tradicional e é baseada no conceito de pontos cardeais para estabelecer as direções a serem seguidas até o objetivo e para evitar obstáculos. Esta definição permite o uso de um ambiente simulado reduzido para treinamento, fornecendo aos agentes um conhecimento prévio à aplicação no ambiente real e facilitando, em consequência, a convergência para uma ação dita ótima em poucas iterações. Utilizam-se, no total, três agentes: um para controlar o deslocamento do centro de massa enquanto as duas pernas estão apoiadas ao chão, e outros dois para manter o centro de massa dentro de uma área de tolerância de cada um dos pés na situação em que o robô estiver apoiado com apenas um dos pés no chão. O controle híbrido foi também concebido para reduzir as chances de queda do robô durante a caminhada mediante o uso de uma série de restrições, tanto pelo aprendizado por reforço como pelo modelo da cinemática do robô. A abordagem proposta permite um treinamento eficiente em poucas iterações, produz bons resultados e assegura a integridade do robô.
This dissertation presents the development of a hybrid control for an Atlas humanoid robot moving forward in a static locomotion regime. The Gazebo simulation environment used in the experiments allows a precise modeling of the robot. The developed system consists of the robot mechanics modeling, including dynamical equations that allow the control of joints by computed-torque and the determination of positions the joints should take. This is accomplished by agents that make use of the approximate Q-Learning reinforcement learning algorithm to plan the robot s locomotion. The definition of the state space that makes up each agent differs from the traditional cartesian one and is based on the concept of cardinal points to establish the directions to be followed to the goal and avoid obstacles. This allows the use of a reduced simulated environment for training, providing the agents with prior knowledge to the application in a real environment and facilitating, as a result, convergence to a so-called optimal action in few iterations. Three agents are used: one to control the center of mass displacement when the two legs are poised on the floor and other two for keeping the center of mass within a tolerance range of each of the legs when only one foot is on the ground. In order to reduce the chance of the robot falling down while walking the hybrid control employs a number of constraints, both in the reinforcement learning part and in the robot kinematics model. The proposed approach allows an effective training in few iterations, achieves good results and ensures the integrity of the robot.
Gullayanon, Rutchanee. „Motion Control of 3 Degree-Of-Freedom Direct-Drive Robot“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6969.
Der volle Inhalt der QuelleOliveira, Israel Gonçalves de. „Comparação entre as estratégias de controle por torque calculado e controle repetitivo aplicados a manipuladores robóticos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/156791.
Der volle Inhalt der QuelleThis work presents a comparison between the strategies of computed-torque control and repetitive control applied to robotic manipulators. The main objective in use these controllers with the manipulator is to tracking periodic trajectory in joint space. The development and implementation of controllers are focused on the Whole Arm Manipulator (WAM) of the Barrett Technology®Inc. Also featured are a non-linear model formulation of the manipulator and the synthesis of controllers for computed-torque control and repetitive control applied to the manipulator model linearized by state feedback. The computed-torque controller is presented in its classic form. For the repetitive controller, the synthesis is based on the internal model principle with the addition of a repetitive structure and a proportional-derivative reference tracking error feedback. The design of the repetitive controller gains is done through a convex optimization problem with linear matrix inequalities (LMI) constraints. The formulation of the optimization problem is based on the Lyapunov stability theory using a Lyapunov-Krasoviskii functional, addition of a quadratic cost for performance adjustment and a transient performance criteria given by the exponential decay rate of the states norm. A comparison between the control strategies and the validation of the repetitive controller applied to the case with perfect linearization and the case with the non-linear model of the manipulator are presented. In the first case, is made simulations of the linear model of the manipulator in MATLAB program, with the addition of a disturbance modeling the friction torque at the joint. In the second case, is used the Robot Operating System (ROS) with Gazebo program simulating the WAM nonlinear model. In this case, a possible mismatch between the model used for the feedback linearization and the real system is taken into account.
Machín, Sofía Valentina. „Diseño de un controlador para un vehículo movil“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/172037.
Der volle Inhalt der QuelleThe following dissertation tries to develop and test a movil robot controller for agricultural purposes. Framed in a bigger proyect that is currently developing a mobile robot prototype with autonomous movement to help with agricultural work, this work starts in the kinematic equations developed for the prototype and develops a control strategy through computed torque control for the autonomous movement of the vehicle and simulations are performed of such computation. With this work finished and with the results obtained is ready to continue with the experimental instance in the prototype.
Barbeiro, Tácio Luiz de Souza. „Controle de robôs manipuladores subatuados via Síntese-μ“. Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-12082016-160927/.
Der volle Inhalt der QuelleThis work deals with implementation of a robust control technique, μ-Synthesis, in a mani- pulator robot with three degrees of freedom and passive joints. The necessity of a robust control is due to the fact that in a real application the system is subject to changes in its internal parameters and external disturbances (sensor noise, etc). Here, a robust control methodology that combines the computed torque method and robust controllers designed via μ-Synthesis is proposal and used with success. The mathematical formulation of the system dynamics is presented and the linearization is accomplished by the state feedback included in the method. An overview of theoretical concepts presents in the μ-Synthesis theory is made and a design procedure is presented. Nominal models for all robot\'s configurations are defined and robust controllers are designed using the D-K iterations method. The test and validation of the controllers are realized in a simulation environment and also in the experimental manipulator UArmII (Underactuated Robot Manipulator II), that is a robot manipulator (equipped with 3 joints, actuators and brakes) projected for the study of passive dynamics.
Nyzen, Robert J. „Analysis and control of an eight degree-of-freedom manipulator“. Ohio : Ohio University, 1999. http://www.ohiolink.edu/etd/view.cgi?ohiou1175796367.
Der volle Inhalt der QuelleAlmeida, Mateus Vagner Guedes de. „Estudo da concepção de um robô paralelo de três graus de liberdade“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/182416.
Der volle Inhalt der QuelleThe 3-RPS mechanism is a parallel mechanism that has three degrees of freedom: roll, pitch and heave. It has a cost advantage compared to the Stewart Platform manipulator in applications where six degrees of freedom are not required and, because it is a parallel mechanism, has a higher weight / load ratio than serial robots. In the present work, a study is carried out for the design of a 3-RPS robot. The study addresses the kinematics, dynamics and control strategy for the robot. A computed torque control is applied to a 1:1 scale virtual CAD model developed with the purpose of testing the control strategy elaborated from the computational simulations of the entire system. Seven simulations were performed for different conditions of desired trajectories. In Case I, an idealized system was first run where the regime error tended to zero for an underdamped behavior. The calculated gains in Case I idealized were then applied in Case I with the virtual model where it was verified that the calculated gains were not enough to guarantee the desired trajectory of the robot. With gains increased by one hundred times, it was found that the regime error was 0.22 mm, and the value was considered acceptable. In the subsequent simulations, the regime error in Cases II and III were also 0.22 mm and in Cases IV, V, VI and VII the maximum error of trajectory did not exceed the stipulated 0.22 mm.
Valente, Vitor Tumelero. „Análise, simulação e controle de um sistema de compensação de movimento utilizando um manipulador plataforma de stewart acionado por atuadores hidráulicos“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/141138.
Der volle Inhalt der QuelleThe Stewart platform mechanism is a parallel manipulator with six degrees of freedom, high load/weight ratio and high stifness. These properties give them a better accuracy when compared to serial manipulators. This work focuses on study of electrohydraucally Stewart Platform Manipulators (MPS) to enable compensation of vessels motions for load and personell transfer in sea. Aimed at developing an experimental prototype, a second MPS is placed underneath the rst MPS to simulate vessels motions and so both manipulators are considered dynamically decoupled. In this sense, the kinematics and dynamics of this manipulator are presented, as well as a mathematical model of the hydraulic actuator. Furthermore, special attention is given to the study of inertial measurement units (IMU) which is used as an instrument for measuring the motion to be compensated. Controller design for the compensation system is developed considering compute torque theory which consider the system separated in two: mechanical and hydraulic. The Lyapunov criteria is used to guarantee closed loop stability for each subsystem. Simulations are performed considering similar vessel motions. Signals provided from a comercial IMU are used for motion compensation. The control compensation performance is veri ed by means of computer simulations.
Kocak, Elif. „Control Law Partitioning Applied To Beam And Ball System“. Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609564/index.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Computed Torque Control"
Sankaran, Jayavel. Real-time computed torque control of flexible-joint robots. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Den vollen Inhalt der Quelle findenPolites, Michael E. A control design for the attitude control and determination system for the Magnetosphere Imager spacecraft. MSFC, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1995.
Den vollen Inhalt der Quelle findenShchuka, Andrew Joseph. Tip control of a flexible manipulator using the computed torque technique. 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Computed Torque Control"
Caccavale, Fabrizio. „Computed-Torque Control“. In Encyclopedia of Robotics, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_91-1.
Der volle Inhalt der QuelleTeshnehlab, Mohammad, und Keigo Watanabe. „Self-Tuning Computed Torque Control: Part I“. In Intelligent Control Based on Flexible Neural Networks, 107–36. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9187-4_5.
Der volle Inhalt der QuelleTeshnehlab, Mohammad, und Keigo Watanabe. „Self-Tuning Computed Torque Control: Part II“. In Intelligent Control Based on Flexible Neural Networks, 137–70. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9187-4_6.
Der volle Inhalt der QuelleKumar, Manish, Ashish Gupta und Neelu Nagpal. „Tracking Control of Robot Using Intelligent-Computed Torque Control“. In Advances in Intelligent Systems and Computing, 619–28. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1822-1_58.
Der volle Inhalt der QuelleAn, C. H., C. G. Atkeson, J. D. Griffiths und J. M. Hollerbach. „Experimental Evaluation of Feedforward and Computed Torque Control“. In RoManSy 6, 488–95. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6915-8_50.
Der volle Inhalt der QuelleJribi, Racem, Boutheina Maalej und Nabil Derbel. „Exoskeletons Control via Computed Torque for Lower Limb Rehabilitation“. In New Trends in Robot Control, 131–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1819-5_7.
Der volle Inhalt der QuelleDjelal, Nacereddine, Isma Boudouane, Nadia Saadia und Amar Ramdane-Cherif. „Robot Control by Computed Torque Based on Support Vector Regression“. In Lecture Notes in Computer Science, 443–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41009-8_48.
Der volle Inhalt der QuelleKoessler, A., N. Bouton, S. Briot, B. C. Bouzgarrou und Y. Mezouar. „Linear Adaptive Computed Torque Control for Singularity Crossing of Parallel Robots“. In ROMANSY 22 – Robot Design, Dynamics and Control, 222–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78963-7_29.
Der volle Inhalt der QuelleZelei, Ambrus, und Gábor Stépán. „The ACROBOTER Platform - Part 2: Servo-Constraints in Computed Torque Control“. In IUTAM Symposium on Dynamics Modeling and Interaction Control in Virtual and Real Environments, 11–18. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1643-8_2.
Der volle Inhalt der QuelleYan, Yao, Le Liang, Yanyan Chen, Yue Wang und Yanjie Liu. „A Method of Computed-Torque Deviation Coupling Control Based on Friction Compensation Analysis“. In Intelligent Robotics and Applications, 800–811. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65292-4_69.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Computed Torque Control"
Nguyen-Tuong, Duy, Matthias Seeger und Jan Peters. „Computed torque control with nonparametric regression models“. In 2008 American Control Conference (ACC '08). IEEE, 2008. http://dx.doi.org/10.1109/acc.2008.4586493.
Der volle Inhalt der QuelleMathew, Shyju Susan, und V. R. Jisha. „Tracking Control of a Mobile Manipulator with External Torque Disturbances Using Computed Torque Control“. In 2020 IEEE 17th India Council International Conference (INDICON). IEEE, 2020. http://dx.doi.org/10.1109/indicon49873.2020.9342099.
Der volle Inhalt der QuelleKardos, Jan. „Robust Computed Torque Method of Robot Tracking Control“. In 2019 22nd International Conference on Process Control (PC19). IEEE, 2019. http://dx.doi.org/10.1109/pc.2019.8815088.
Der volle Inhalt der QuelleVazquez, J. A., und M. Velasco-Villa. „Computed-Torque Control of an Omnidirectional Mobile Robot“. In 2007 4th International Conference on Electrical and Electronics Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iceee.2007.4345021.
Der volle Inhalt der QuelleMiddletone, R., und G. Goodwin. „Adaptive computed torque control for rigid link manipulators“. In 1986 25th IEEE Conference on Decision and Control. IEEE, 1986. http://dx.doi.org/10.1109/cdc.1986.267156.
Der volle Inhalt der QuellePaccot, Flavien, Nicolas Andreff, Philippe Martinet und Wisama Khalil. „Vision-based Computed Torque Control for Parallel Robots“. In IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006. http://dx.doi.org/10.1109/iecon.2006.347537.
Der volle Inhalt der QuelleZelei, Ambrus, La´szlo´ L. Kova´cs und Ga´bor Ste´pa´n. „Computed Torque Control Method for Under-Actuated Manipulator“. In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86409.
Der volle Inhalt der QuelleFicici, Seniz, Edwin M. Sawan und Behnam Bahr. „Fuzzy compensated computed torque control of a manipulator“. In Photonics East '96, herausgegeben von Bartholomew O. Nnaji. SPIE, 1996. http://dx.doi.org/10.1117/12.262501.
Der volle Inhalt der QuelleYaz, E., S. Fadali und M. Zohdy. „Deterministic and Stochastic Robustness of the Computed Torque Scheme“. In 1990 American Control Conference. IEEE, 1990. http://dx.doi.org/10.23919/acc.1990.4790829.
Der volle Inhalt der QuelleFadali, M. S., M. Zohdy und B. Adamczyk. „Robust Pole Assignment for Computed Torque Robotic Manipulators Control“. In 1989 American Control Conference. IEEE, 1989. http://dx.doi.org/10.23919/acc.1989.4790163.
Der volle Inhalt der Quelle