Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CONDUCTING POLYMERS (CPs)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CONDUCTING POLYMERS (CPs)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CONDUCTING POLYMERS (CPs)"
Acosta, Mariana, Marvin D. Santiago und Jennifer A. Irvin. „Electrospun Conducting Polymers: Approaches and Applications“. Materials 15, Nr. 24 (09.12.2022): 8820. http://dx.doi.org/10.3390/ma15248820.
Der volle Inhalt der QuelleAbel, Silvestre Bongiovanni, Evelina Frontera, Diego Acevedo und Cesar A. Barbero. „Functionalization of Conductive Polymers through Covalent Postmodification“. Polymers 15, Nr. 1 (31.12.2022): 205. http://dx.doi.org/10.3390/polym15010205.
Der volle Inhalt der QuelleSharma, Shubham, P. Sudhakara, Abdoulhdi A. Borhana Omran, Jujhar Singh und R. A. Ilyas. „Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications“. Polymers 13, Nr. 17 (28.08.2021): 2898. http://dx.doi.org/10.3390/polym13172898.
Der volle Inhalt der QuelleSołoducho, Jadwiga, Dorota Zając, Kamila Spychalska, Sylwia Baluta und Joanna Cabaj. „Conducting Silicone-Based Polymers and Their Application“. Molecules 26, Nr. 7 (01.04.2021): 2012. http://dx.doi.org/10.3390/molecules26072012.
Der volle Inhalt der QuelleRamanavicius, Simonas, und Arunas Ramanavicius. „Conducting Polymers in the Design of Biosensors and Biofuel Cells“. Polymers 13, Nr. 1 (25.12.2020): 49. http://dx.doi.org/10.3390/polym13010049.
Der volle Inhalt der QuelleAnand Kumar. „Role of conducting polymers in corrosion protection“. World Journal of Advanced Research and Reviews 17, Nr. 2 (28.02.2023): 045–47. http://dx.doi.org/10.30574/wjarr.2023.17.2.0238.
Der volle Inhalt der QuelleLuong, John H. T., Tarun Narayan, Shipra Solanki und Bansi D. Malhotra. „Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications“. Journal of Functional Biomaterials 11, Nr. 4 (25.09.2020): 71. http://dx.doi.org/10.3390/jfb11040071.
Der volle Inhalt der QuelleBubniene, Urte Samukaite, Vilma Ratautaite, Arunas Ramanavicius und Vytautas Bucinskas. „Conducting Polymers for the Design of Tactile Sensors“. Polymers 14, Nr. 15 (23.07.2022): 2984. http://dx.doi.org/10.3390/polym14152984.
Der volle Inhalt der QuelleArmel, Vanessa, Orawan Winther-Jensen, Meng Zhang und Bjorn Winther-Jensen. „Electrochemical Reactivity on Conducting Polymer Alloys“. Advanced Materials Research 747 (August 2013): 489–92. http://dx.doi.org/10.4028/www.scientific.net/amr.747.489.
Der volle Inhalt der QuellePark, Yohan, Jaehan Jung und Mincheol Chang. „Research Progress on Conducting Polymer-Based Biomedical Applications“. Applied Sciences 9, Nr. 6 (14.03.2019): 1070. http://dx.doi.org/10.3390/app9061070.
Der volle Inhalt der QuelleDissertationen zum Thema "CONDUCTING POLYMERS (CPs)"
Balogun, Yunusa A. „Enhanced Percolative Properties from Controlled Filler Dispersion in Conducting Polymer Composites (CPCs)“. University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1245352889.
Der volle Inhalt der QuelleBHARGAVA, SUMEET. „TEMPERATURE AND GAS SENSING CHARACTERISTICS OF GRAPHITE/POLYMER (PEO) BASED COMPOSITE STRUCTURES“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1152821559.
Der volle Inhalt der QuelleKumar, Bijandra. „Development of smart textiles with low environmental footprint from Conductive polymer nanoComposites“. Lorient, 2010. http://www.theses.fr/2010LORIS195.
Der volle Inhalt der QuelleThis research work concerns the investigation and development of innovative eco-friendly smart multi-reactive textiles made of Conductive Polymer nanoComposite (CPC) within the frame of the European Union Commission funded project entitled “INTELTEX”. Multiwalled Carbon Nanotubes (CNT) have been used as conductive nanofiller to create conductive networks within both synthetic and bio-sourced polymer matrices. The ability of CPC thin films based sensor to detect Volatile Organic Compound (VOC) has been investigated by exposing them to a wide set of solvent vapours. Novel strategies have been introduced to fabricate vapour sensor with controlled hierarchical condictive architecture. The sensors developed were found to have a high potential to detect as well as to discriminate the studied vapours. In a second part the knowledge developed with CPC thin film was transferred to both mono-phasic and bi-phasic conductive textiles, which were demonstrated to be sensitive to vapours and temperature. In particular novel bi-phasic CPC textiles structured using double percolation were found to exhibit a sharp positive temperature coefficient (PTC) characteristic in the range 30 - 60°C. In the last part it has been shown that eco-friendly matrices could be proposed in substitution of synthetic polymers to decrease their environmental footprint. Finally, it has been demonstrated that CNT based CPC had a high potential as smart material to develop multi-reactive smart textile for vapour and temperature sensing
Lu, Jianbo. „Development of intelligent textiles from conductive polymer composites (CPC) for vapour and temperature sensing“. Lorient, 2009. http://www.theses.fr/2009LORIS149.
Der volle Inhalt der QuelleHashemi, Sanatgar Razieh. „FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I052/document.
Der volle Inhalt der QuelleThe aim of this study is to get the benefit of functionalities of fused deposition modeling (FDM) 3D printed conductive polymer nanocomposites (CPC) for the development of functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, development and characterization of 3D printable functional polymers and nanocomposites are needed to apply 3D printing as a novel process for the deposition of functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effective textile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understanding of the process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3D printing process showed a significant effect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fitted model for the specific polymer and fabric
Hout, Jamal el. „Etude des mouvements moleculaires dans le polyacetylene par courant thermostimule“. Toulouse 3, 1986. http://www.theses.fr/1986TOU30061.
Der volle Inhalt der QuellePANERU, SAROJ. „STUDIES ON CONDUCTING POLYMER-BASED NANOCOMPOSITES FOR PESTICIDE DETECTION“. Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20436.
Der volle Inhalt der QuelleJoseph, Alex. „Synthesis and Characterization of Functionalized Electroactive Polymers for Metal Ion Sensing“. Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3056.
Der volle Inhalt der QuelleJoseph, Alex. „Synthesis and Characterization of Functionalized Electroactive Polymers for Metal Ion Sensing“. Thesis, 2014. http://hdl.handle.net/2005/3056.
Der volle Inhalt der QuelleBuchteile zum Thema "CONDUCTING POLYMERS (CPs)"
Chandrasekhar, Prasanna. „Introducing Conducting Polymers (CPs)“. In Conducting Polymers, Fundamentals and Applications, 159–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_27.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Electrochemistry of CPs“. In Conducting Polymers, Fundamentals and Applications, 77–99. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_4.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Basics of Conducting Polymers (CPs)“. In Conducting Polymers, Fundamentals and Applications, 3–22. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_1.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Semiconductor Models for CPs“. In Conducting Polymers, Fundamentals and Applications, 23–42. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_2.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Basic Electrochromics of CPs“. In Conducting Polymers, Fundamentals and Applications, 43–76. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_3.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Conduction Models for CPs“. In Conducting Polymers, Fundamentals and Applications, 143–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_6.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Theoretical Treatments of CPs“. In Conducting Polymers, Fundamentals and Applications, 173–206. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_7.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Basic Electrochromics of CPs“. In Conducting Polymers, Fundamentals and Applications, 251–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_29.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Basic Electrochemistry of CPs“. In Conducting Polymers, Fundamentals and Applications, 283–309. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_30.
Der volle Inhalt der QuelleChandrasekhar, Prasanna. „Classes of CPs: Part 1“. In Conducting Polymers, Fundamentals and Applications, 371–91. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CONDUCTING POLYMERS (CPs)"
Talwar, Brijpal Singh, Kambiz Chizari, Shuangzhuang Guo und Daniel Therriault. „Investigation of Carbon Nanotubes Mixing Methods and Functionalizations for Electrically Conductive Polymer Composites“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39970.
Der volle Inhalt der QuelleBorriello, C., S. Masala, V. Bizzarro, G. Nenna, M. Re, E. Pesce, C. Minarini et al. „Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots“. In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455549.
Der volle Inhalt der QuelleAnitha, Bahuleyan, Bhaskaran Vilasini Vibitha, Prabhakaran Sreedevi Prabha Jyothi und John Nisha Tharayil. „Structural and morphological studies of conducting polymer nanocomposites“. In 16TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-16). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0030089.
Der volle Inhalt der QuelleNaji, Ahmed, Petra Pötschke und Amir Ameli. „Electrical Conductivity of Multifunctional Blend Composites of Polycarbonate and Polyethylene With Hybrid Fillers“. In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-97843.
Der volle Inhalt der QuelleRowberry, P. J. „Intrinsically conductive polymers for electromagnetic screening“. In 9th International Conference on Electromagnetic Compatibility. IEE, 1994. http://dx.doi.org/10.1049/cp:19940687.
Der volle Inhalt der QuelleMazlan, N. A., S. Shahabuddin, S. N. A. Baharin, A. K. Pandey und R. Saidur. „Conducting Polymers: New Arena in Dye-sensitized Solar Cells“. In 5th IET International Conference on Clean Energy and Technology (CEAT2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1324.
Der volle Inhalt der QuelleAlbright, Tyler B., und Jared D. Hobeck. „Development of Manufacturing and Characterization Methods for Carbon Black-Based Conductive Polymer Composite Sensors“. In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24060.
Der volle Inhalt der QuelleGuo, Qingchuan, Reza Ghadiri, Thomas Weigel, Andreas Aumann, Evgeny L. Gurevich, Cemal Esen, Yan Li, Wei Cheng, Boris Chichkov und Andreas Ostendorf. „Ex-situ preparation of high-conductive polymer/SWNTs nanocomposites for structure fabrication“. In SPIE/COS Photonics Asia, herausgegeben von Zhiping Zhou und Kazumi Wada. SPIE, 2014. http://dx.doi.org/10.1117/12.2071870.
Der volle Inhalt der QuelleGhosh, Dipannita, Md Ashiqur Rahman, Ali Ashraf und Nazmul Islam. „Graphene-Conductive Polymer-Based Electrochemical Sensor for Dopamine Detection“. In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96193.
Der volle Inhalt der QuelleNaji, Ahmed, Petra Pötschke und Amir Ameli. „Melt Processed Conductive Polycarbonate Composites With Ternary Fillers Towards Bipolar Plate Applications“. In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8046.
Der volle Inhalt der Quelle