Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CONVERSION OF ENERGY“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CONVERSION OF ENERGY" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CONVERSION OF ENERGY"
Kishore, Abhishek, und Ameen Uddin Ahmad. „Ocean Thermal Energy Conversion“. International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31.08.2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.
Der volle Inhalt der QuelleGates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola und Yong Wang. „Catalysts for Emerging Energy Applications“. MRS Bulletin 33, Nr. 4 (April 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.
Der volle Inhalt der QuelleYAMABE, Chobei, und Kenji HORII. „Direct energy conversion.“ Journal of the Fuel Society of Japan 68, Nr. 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.
Der volle Inhalt der QuelleBossel, Ulf. „Alternative Energy Conversion“. Ceramics in Modern Technologies 2, Nr. 2 (29.05.2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.
Der volle Inhalt der QuellePilon, Laurent, und Ian M. McKinley. „PYROELECTRIC ENERGY CONVERSION“. Annual Review of Heat Transfer 19, Nr. 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.
Der volle Inhalt der QuelleBatschelet, William H. „Photochemical energy conversion“. Journal of Chemical Education 63, Nr. 5 (Mai 1986): 435. http://dx.doi.org/10.1021/ed063p435.
Der volle Inhalt der QuellePeter, L. M. „Photochemical energy conversion“. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, Nr. 1-2 (Juni 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.
Der volle Inhalt der QuelleMarignetti, Fabrizio, Haitao Yu und Luigi Cappelli. „Marine Energy Conversion“. Advances in Mechanical Engineering 5 (Januar 2013): 457083. http://dx.doi.org/10.1155/2013/457083.
Der volle Inhalt der QuelleDragt, J. B. „Wind Energy Conversion“. Europhysics News 24, Nr. 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.
Der volle Inhalt der QuellePalacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell et al. „Bioinspired energy conversion“. Pure and Applied Chemistry 77, Nr. 6 (01.01.2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.
Der volle Inhalt der QuelleDissertationen zum Thema "CONVERSION OF ENERGY"
Lundin, Staffan. „Marine Current Energy Conversion“. Doctoral thesis, Uppsala universitet, Elektricitetslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-280763.
Der volle Inhalt der QuelleSilva, Ubiravan Geraldo de Oliveira e. [UNESP]. „Análise energética em refino de petróleo“. Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/99282.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
No trabalho apresentado foi realizada uma análise de eficiência energética levando em conta variáveis tais como a pressão, a temperatura, o estado físico dos componentes e a atividade de cada elemento que compõe a unidade de craqueamento em refino de petróleo. Tal análise foi realizada baseando-se na Primeira e Segunda leis da Termodinâmica. Destacou-se na análise do FCC a geração e a perda de energia com os gases, levando em conta a concentração molar de cada gás na entrada e na saída do FCC. No riser foram levadas em conta as transformações ocorridas e sua cinética com o propósito de fazer uma análise de gasto de energia no processo de formação inicial dos produtos do FCC; com isso, determinaram-se as quantidades de calor que foram utilizados no processo principal de formação. Foram realizadas análises sobre os fluxos de massas no vaso separador com a abordagem de um suposto fluxo interno, que seria a diferença entre as energias adquiridas com o vapor de retificação com os fluxos de carbono arrastados e com energia vinda do riser, e o fluxo de saída também para o processo de retificação no stripper. Verificou-se a energia gerada pelo regenerador e sua distribuição, que é feita com o aquecimento do catalisador na linha de transmissão do stripper e das perdas de energia com a troca do catalisador gasto e pela massa de catalisador que entra no riser. A energia perdida durante o processo foi associada à energia perdida na integralidade e em cada unidade. Verificou-se que uma parcela do calor gerado no processo é absorvida por gases inertes necessários ou integrados a gases reagentes; além disso, observou-se a formação de novos gases e compostos químicos que geram certas quantidades de energia, e que estão e são importantes na contabilização de toda energia que é gerada. Em tal análise levou-se em conta a energia de formação dos gases e a...
In the present study it was performed an analysis of energy efficiency taking into account variables such as pressure, temperature, physical state of the components and activities of each element that makes up a cracker in petroleum refining. The First and Second Law of Thermodynamics were used for the present analysis. It was highlighted in the analysis of the FCC the generation and loss of energy with the gases, taking into account the molar concentration of each gas at the inlet and outlet of the FCC. In the riser it was taken into account the transformations and their kinetics in order to make an analysis of energy use in the process of initial formation of the products of the FCC; with these results, it was determined the amounts of heat that were used in the main proceedings training. It was analyzed the flow of masses in the separator vessel with the approach of a supposed internal flow, which would be the difference between the energy gained steam with the rectification of carbon fluxes and dragged with energy coming from the riser, and the outflow also for the grinding process in stripper. There was the energy generated by the regenerator and its distribution, which is made by heating the catalyst in the transmission line striper and loss of energy with the exchange of spent catalyst and the mass of catalyst entering the riser. The energy lost during the process was associated with the energy that disappeared in the whole and in each unit. It was found that a portion of the heat generated is absorbed by inert gases necessary or integrated reactive gases; in addition, it was observed the formation of new gases and chemicals that generate amounts of energy, and are important in accounting for all energy that is generated. In this analysis it was taken into account the energy of formation of exhaust gases and the opportunities of products formation in the conditions ... (Complete abstract click electronic access below)
Thorburn, Karin. „Electric Energy Conversion Systems : Wave Energy and Hydropower“. Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7081.
Der volle Inhalt der QuelleBalouchi, Farouk. „Footfall energy harvesting : footfall energy harvesting conversion mechanisms“. Thesis, University of Hull, 2013. http://hydra.hull.ac.uk/resources/hull:8433.
Der volle Inhalt der QuelleZhao, Yixin. „Developing Nanomaterials for Energy Conversion“. Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270172686.
Der volle Inhalt der QuelleLaestander, Joakim, und Simon Laestander. „OTEC - Ocean Thermal Energy Conversion“. Thesis, KTH, Energiteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98974.
Der volle Inhalt der QuelleOTEC är en teknik där kraft utvinns från havsvatten genom att utnyttja temperaturdifferensen mellan ytvatten och vatten från djupet. Denna teknik kräver dock generellt en temperaturdifferens på minst 20K. En sådan temperaturskillnad är geografiskt begränsad till den tropiska zonen runt ekvatorn.I rapporten undersöks om OTEC kan användas till att förse 100 000 människor, boende på en 10 stor generisk ö i just den tropiska zonen, med dess elbehov. I detta projekt har det gjorts en litteraturstudie för att etablera en kunskapsbas och sedan gjorts en matematisk modell i programmet EES och slutligen har resultaten från modellen granskats och diskuterats. I modellen jämfördes två olika cykler och målet var att bestämma vilken av dessa som var det bästa alternativet för ön. För att underlätta beräkningarna gjordes vissa antaganden och förenklingar.Den slutna cykeln var mest effektiv men den öppna cykeln (OC) hade positiva synergieffekter som den sluta cykeln (CC) saknade. Kostnaden för en anläggning baserades på äldre studier och enligt dessa var den öppna cykeln billigare än den slutna. Anläggningar av de båda cyklerna kan tillgodose den fiktiva öns energibehov, det behöver dock byggas fler anläggningar om OC väljs framför CC.Det kommer krävas ytterligare arbete med att utveckla tekniken innan OTEC på allvar kan utmana dagens fossilbränslebaserade energisystem – eller att oljan helt enkelt blir för dyr. Idag är OTEC för dyrt för att kunna motiveras rent ekonomiskt, men om även miljövinsterna beaktas, samt att ön befriar sig från importer och därigenom får större kontroll över sitt eget energisystem, finns goda incitament att investera i OTEC redan idag.
Chin, Timothy Edward. „Electrochemical to mechanical energy conversion“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/63015.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Electrode materials for rechargeable lithium ion batteries are well-known to undergo significant dimensional changes during lithium-ion insertion and extraction. In the battery community, this has often been looked upon negatively as a degradation mechanism. However, the crystallographic strains are large enough to warrant investigation for use as actuators. Lithium battery electrode materials lend themselves to two separate types of actuators. On one hand, intercalation oxides and graphite provide moderate strains, on the order of a few percent, with moderate bandwidth (frequency). Lithium intercalation of graphite can achieve actuation energy densities of 6700 kJ m-3 with strains up to 6.7%. Intercalation oxides provide strains on the order of a couple percent, but allow for increased bandwidth. Using a conventional stacked electrode design, a cell consisting of lithium iron phosphate (LiFePO4) and carbon achieved 1.2% strain with a mechanical power output of 1000 W m 3 . Metals, on the other hand, provide colossal strains (hundreds of percent) upon lithium alloying, but do not cycle well. Instead, a self-amplifying device was designed to provide continuous, prolonged, one-way actuation over longer time scales. This was still able to achieve an energy density of 1700 kJ n 3, significantly greater than other actuation technologies such as shape-memory alloys and conducting polymers, with displacements approaching 10 mm from a 1 mm thick disc. Further, by using lithium metal as the counterelectrode in an electrochemical couple, these actuation devices can be selfpowered: mechanical energy and electrical energy can be extracted simultaneously.
by Timothy Edward Chin.
Ph.D.
Clark, Joanna Helen. „Inorganic materials for energy conversion“. Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.569768.
Der volle Inhalt der QuelleQiu, Xiaofeng. „NANOSTRUCTURED MATERIALS FOR ENERGY CONVERSION“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1207243913.
Der volle Inhalt der QuelleRiboni, F. „PHOTOCATALYTIC REACTIONS FOR ENERGY CONVERSION“. Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244319.
Der volle Inhalt der QuelleBücher zum Thema "CONVERSION OF ENERGY"
Goswami, D. Yogi, und Frank Kreith, Hrsg. Energy Conversion. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192.
Der volle Inhalt der QuelleKocabiyikoğlu, Zeki Uğurata. Electromechanical Energy Conversion. First edition. | Boca Raton, FL : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317637.
Der volle Inhalt der QuellePiotrowiak, Piotr, Hrsg. Solar Energy Conversion. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849735445.
Der volle Inhalt der QuellePleskov, Yuri V. Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74958-2.
Der volle Inhalt der QuelleLikhtenshtein, Gertz. Solar Energy Conversion. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647668.
Der volle Inhalt der QuelleKitanovski, Andrej, Jaka Tušek, Urban Tomc, Uroš Plaznik, Marko Ožbolt und Alojz Poredoš. Magnetocaloric Energy Conversion. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08741-2.
Der volle Inhalt der QuelleRosa, Richard J. Magnetohydrodynamic energy conversion. Washington: Hemisphere Pub. Corp., 1987.
Den vollen Inhalt der Quelle findenSoni, Amit, Dharmendra Tripathi, Jagrati Sahariya und Kamal Nayan Sharma. Energy Conversion and Green Energy Storage. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258209.
Der volle Inhalt der QuelleBauer, Gottfried H. Photovoltaic Solar Energy Conversion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46684-1.
Der volle Inhalt der QuelleBuchteile zum Thema "CONVERSION OF ENERGY"
Wolff, Lodwijk Reiner, und Valerylvanovit Yarigin. „Thermionic Energy Conversion, Space Technology for Energy Conservation“. In Conversion, 199–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-95701-7_32.
Der volle Inhalt der QuelleDemirel, Yaşar. „Energy Conversion“. In Energy, 229–303. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2372-9_7.
Der volle Inhalt der QuelleDemirel, Yaşar. „Energy Conversion“. In Energy, 241–319. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29650-0_7.
Der volle Inhalt der QuelleDemirel, Yaşar. „Energy Conversion“. In Energy, 233–311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56164-2_7.
Der volle Inhalt der QuelleSankaranarayanan, Krishnan. „Energy Conversion“. In Efficiency and Sustainability in the Energy and Chemical Industries, 103–32. 3. Aufl. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003304388-12.
Der volle Inhalt der QuelleKurchania, A. K. „Biomass Energy“. In Biomass Conversion, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28418-2_2.
Der volle Inhalt der QuelleRenner, Joel L., und Marshall J. Reed. „Geothermal Energy“. In Energy Conversion, 177–87. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-8.
Der volle Inhalt der QuelleGoswami, D. Yogi, und Frank Kreith. „Global Energy Systems“. In Energy Conversion, 1–30. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-1.
Der volle Inhalt der QuelleBunce, Richard H. „Gas Turbines“. In Energy Conversion, 209–22. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-10.
Der volle Inhalt der QuelleKlett, David E., Elsayed M. Afify, Kalyan K. Srinivasan und Timothy J. Jacobs. „Internal Combustion Engines“. In Energy Conversion, 223–55. Second edition. | Boca Raton : CRC Press, 2017. | Series:: CRC Press, 2017. http://dx.doi.org/10.1201/9781315374192-11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CONVERSION OF ENERGY"
Eijkel, Jan C. T., Albert van den Berg und Yanbo Xie. „Ballistic energy conversion“. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994000.
Der volle Inhalt der QuelleCrabtree, George W., Nathan S. Lewis, David Hafemeister, B. Levi, M. Levine und P. Schwartz. „Solar Energy Conversion“. In PHYSICS OF SUSTAINABLE ENERGY: Using Energy Efficiently and Producing It Renewably. AIP, 2008. http://dx.doi.org/10.1063/1.2993729.
Der volle Inhalt der Quelle„Conversion of solar energy, geothermal energy“. In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.790.
Der volle Inhalt der QuelleHirshfield, J. L., M. A. LaPointe und A. K. Ganguly. „Gyroharmonic conversion experiments“. In High energy density microwaves. AIP, 1999. http://dx.doi.org/10.1063/1.59008.
Der volle Inhalt der QuelleWoolf, L. D. „Solar Photothermophotovoltaic Energy Conversion“. In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9060.
Der volle Inhalt der QuelleRegan, Thomas M., Jose G. Martin, Juanita R. Riccobono und Jacques E. Ludman. „Multisource thermophotovoltaic energy conversion“. In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Tomasz Jannson. SPIE, 1995. http://dx.doi.org/10.1117/12.221246.
Der volle Inhalt der QuelleBeresnevich, Vitalijs, Shravan Koundinya Vutukuru, Martins Irbe, Edgars Kovals, Maris Eiduks, Kaspars Burbeckis und Janis Viba. „Wind energy conversion generator“. In 20th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2021. http://dx.doi.org/10.22616/erdev.2021.20.tf213.
Der volle Inhalt der Quelle„Electro-mechanical energy conversion“. In 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2016. http://dx.doi.org/10.1109/cpe.2016.7544195.
Der volle Inhalt der Quelle„Electro-mechanical energy conversion“. In 2015 9th International Conference on Compatibility and Power Electronics (CPE). IEEE, 2015. http://dx.doi.org/10.1109/cpe.2015.7231076.
Der volle Inhalt der Quelle„Photovoltaic energy conversion systems“. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700285.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CONVERSION OF ENERGY"
Atanassov, Plamen. Materials for Energy Conversion: Materials for Energy Conversion and Storage. Office of Scientific and Technical Information (OSTI), März 2017. http://dx.doi.org/10.2172/1349091.
Der volle Inhalt der QuelleHennessy, Daniel, Rodica Sibisan und Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084473.
Der volle Inhalt der QuelleHennessy, Daniel, Rodica Sibisan und Mike Rasmussen. Solid State Energy Conversion Energy Alliance (SECA). Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1084477.
Der volle Inhalt der QuelleFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), Januar 1987. http://dx.doi.org/10.2172/6369309.
Der volle Inhalt der QuelleFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/6020364.
Der volle Inhalt der QuelleFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/6020379.
Der volle Inhalt der QuelleFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), November 1986. http://dx.doi.org/10.2172/6022834.
Der volle Inhalt der QuelleFayer, M. D. Energy transfer processes in solar energy conversion. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/5118367.
Der volle Inhalt der QuelleCairns, E. J. Energy Conversion and Storage Program. Office of Scientific and Technical Information (OSTI), März 1992. http://dx.doi.org/10.2172/7148265.
Der volle Inhalt der QuelleHutchinson, R. A. Turbulence and energy conversion research. Office of Scientific and Technical Information (OSTI), Juli 1985. http://dx.doi.org/10.2172/6345659.
Der volle Inhalt der Quelle