Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: CONVERSION OF ENERGY.

Zeitschriftenartikel zum Thema „CONVERSION OF ENERGY“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "CONVERSION OF ENERGY" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kishore, Abhishek, und Ameen Uddin Ahmad. „Ocean Thermal Energy Conversion“. International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31.08.2017): 412–15. http://dx.doi.org/10.31142/ijtsrd2314.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gates, Bruce C., George W. Huber, Christopher L. Marshall, Phillip N. Ross, Jeffrey Siirola und Yong Wang. „Catalysts for Emerging Energy Applications“. MRS Bulletin 33, Nr. 4 (April 2008): 429–35. http://dx.doi.org/10.1557/mrs2008.85.

Der volle Inhalt der Quelle
Annotation:
AbstractCatalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO2 and possibly water into liquid fuels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

YAMABE, Chobei, und Kenji HORII. „Direct energy conversion.“ Journal of the Fuel Society of Japan 68, Nr. 11 (1989): 950–60. http://dx.doi.org/10.3775/jie.68.11_950.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bossel, Ulf. „Alternative Energy Conversion“. Ceramics in Modern Technologies 2, Nr. 2 (29.05.2020): 86–91. http://dx.doi.org/10.29272/cmt.2020.0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pilon, Laurent, und Ian M. McKinley. „PYROELECTRIC ENERGY CONVERSION“. Annual Review of Heat Transfer 19, Nr. 1 (2016): 279–334. http://dx.doi.org/10.1615/annualrevheattransfer.2016015566.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Batschelet, William H. „Photochemical energy conversion“. Journal of Chemical Education 63, Nr. 5 (Mai 1986): 435. http://dx.doi.org/10.1021/ed063p435.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Peter, L. M. „Photochemical energy conversion“. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 286, Nr. 1-2 (Juni 1990): 292. http://dx.doi.org/10.1016/0022-0728(90)85084-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Marignetti, Fabrizio, Haitao Yu und Luigi Cappelli. „Marine Energy Conversion“. Advances in Mechanical Engineering 5 (Januar 2013): 457083. http://dx.doi.org/10.1155/2013/457083.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dragt, J. B. „Wind Energy Conversion“. Europhysics News 24, Nr. 2 (1993): 27–30. http://dx.doi.org/10.1051/epn/19932402027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Palacios, Rodrigo E., Stephanie L. Gould, Christian Herrero, Michael Hambourger, Alicia Brune, Gerdenis Kodis, Paul A. Liddell et al. „Bioinspired energy conversion“. Pure and Applied Chemistry 77, Nr. 6 (01.01.2005): 1001–8. http://dx.doi.org/10.1351/pac200577061001.

Der volle Inhalt der Quelle
Annotation:
Artificial photosynthetic antenna systems have been synthesized based on carotenoid polyenes and polymer-polyenes covalently attached to tetrapyrroles. Absorption of light in the blue/green region of the spectra excites the polyenes to their S2 state, and ultrafast singlet energy transfer to the tetrapyrroles occurs when the chromophores are in partial conjugation. The additional participation of other excited states of the polyene in the energy-transfer process is a requirement for perfect antenna function. Analogs of photosynthetic reaction centers consisting of tetrapyrrole chromophores covalently linked to electron acceptors and donors have been prepared. Excitation of these constructs results in a cascade of energy transfer/electron transfer which, in selected cases, forms a final charge-separated state characterized by a giant dipole moment (>150 D), a quantum yield approaching unity, a significant fraction of the photon energy stored as chemical potential, and a lifetime sufficient for reaction with secondary electron donors and acceptors. A new antenna-reaction center complex is described in which a carotenoid moiety is located in partial conjugation with the tetrapyrrole π-system allowing fast energy transfer (<100 fs) between the chromophores. In this assembly, the energy transduction process can be initiated by light absorbed by the polyene.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Herring, A. M., und V. Di Noto. „Electrochemical Energy Conversion“. Interface magazine 24, Nr. 2 (01.01.2015): 37. http://dx.doi.org/10.1149/2.f01152if.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Crabtree, George W., und Nathan S. Lewis. „Solar energy conversion“. Physics Today 60, Nr. 3 (März 2007): 37–42. http://dx.doi.org/10.1063/1.2718755.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Kamalov, ValeyF. „Photochemical energy conversion“. Journal of Photochemistry and Photobiology B: Biology 5, Nr. 2 (April 1990): 273–74. http://dx.doi.org/10.1016/1011-1344(90)80014-o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lewerenz, Hans-Joachim. „Photoelectrochemical Energy Conversion“. ChemPhysChem 13, Nr. 12 (23.03.2012): 2807–8. http://dx.doi.org/10.1002/cphc.201200199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Leijon, M., und K. Nilsson. „Direct electric energy conversion system for energy conversion from marine currents“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 221, Nr. 2 (März 2007): 201–5. http://dx.doi.org/10.1243/09576509jpe303.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mori, I., und K. Sumitomo. „Direct energy conversion of plasma energy“. IEEE Transactions on Plasma Science 16, Nr. 6 (1988): 623–30. http://dx.doi.org/10.1109/27.16550.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Mishima, Tomokazu. „Report on the 7th IEEE Energy Conversion Congress and Exposition (ECCE2015)“. Journal of the Japan Institute of Power Electronics 41 (2015): 181. http://dx.doi.org/10.5416/jipe.41.181.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ohta, Tokio. „Thermoelectric Energy Conversion Technology“. IEEJ Transactions on Fundamentals and Materials 116, Nr. 3 (1996): 196–201. http://dx.doi.org/10.1541/ieejfms1990.116.3_196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Matsubara, Kakuei. „Thermoelectric Energy Conversion Technology“. IEEJ Transactions on Fundamentals and Materials 116, Nr. 3 (1996): 202–6. http://dx.doi.org/10.1541/ieejfms1990.116.3_202.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Kajikawa, Takenobu. „Thremoelectric Energy Conversion Technology“. IEEJ Transactions on Fundamentals and Materials 116, Nr. 3 (1996): 207–11. http://dx.doi.org/10.1541/ieejfms1990.116.3_207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Bybee, Karen. „Ocean-Thermal-Energy Conversion“. Journal of Petroleum Technology 61, Nr. 07 (01.07.2009): 65–66. http://dx.doi.org/10.2118/0709-0065-jpt.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sobczyk, Wiktoria, Oksana Nagorniuk, Olga Riabushenko und Jakub Wlizło. „Solar Energy Conversion Methods“. Edukacja – Technika – Informatyka 23, Nr. 1 (2018): 73–76. http://dx.doi.org/10.15584/eti.2018.1.8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Abed, Youssif, und Mohamed Mohamed Tantawy. „Solar Energy Conversion.(Dept.E)“. MEJ. Mansoura Engineering Journal 4, Nr. 2 (16.12.2021): 71–91. http://dx.doi.org/10.21608/bfemu.2021.187375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ohnaka, Itsuo, und Kaoru Kimura. „Thermoelectric Energy Conversion Materials“. Journal of the Japan Institute of Metals 63, Nr. 11 (1999): 1367. http://dx.doi.org/10.2320/jinstmet1952.63.11_1367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Tinaikar, Aashay. „Ocean Thermal Energy Conversion“. International Journal of Energy and Power Engineering 2, Nr. 4 (2013): 143. http://dx.doi.org/10.11648/j.ijepe.20130204.11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Avery, William H. „Ocean Thermal Energy Conversion“. Maritime Studies 1985, Nr. 23 (Mai 1985): 8–10. http://dx.doi.org/10.1080/08102597.1985.11800569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Moore, Glenis. „Ocean thermal energy conversion“. Electronics and Power 33, Nr. 10 (1987): 649. http://dx.doi.org/10.1049/ep.1987.0386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yokota, Toshikazu. „Unidentified Energy Conversion Technology“. Journal of the Society of Mechanical Engineers 95, Nr. 886 (1992): 821–24. http://dx.doi.org/10.1299/jsmemag.95.886_821.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lewis, Nathan S. „Introduction: Solar Energy Conversion“. Chemical Reviews 115, Nr. 23 (09.12.2015): 12631–32. http://dx.doi.org/10.1021/acs.chemrev.5b00654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Kamat, Prashant V., und Gregory V. Hartland. „Plasmons for Energy Conversion“. ACS Energy Letters 3, Nr. 6 (31.05.2018): 1467–69. http://dx.doi.org/10.1021/acsenergylett.8b00721.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Rasor, N. S. „Thermionic energy conversion plasmas“. IEEE Transactions on Plasma Science 19, Nr. 6 (1991): 1191–208. http://dx.doi.org/10.1109/27.125041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

WALZ, D. „Biothermokinetics of energy conversion“. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1101, Nr. 2 (17.07.1992): 257–59. http://dx.doi.org/10.1016/s0005-2728(05)80034-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Wang, Xuxu, Dengwei Jing und Meng Ni. „Solar photocatalytic energy conversion“. Science Bulletin 62, Nr. 9 (Mai 2017): 597–98. http://dx.doi.org/10.1016/j.scib.2017.04.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Buller, Saskia, und Jennifer Strunk. „Nanostructure in energy conversion“. Journal of Energy Chemistry 25, Nr. 2 (März 2016): 171–90. http://dx.doi.org/10.1016/j.jechem.2016.01.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Djilali, Ned. „Materials for energy conversion“. Science Bulletin 61, Nr. 8 (April 2016): 585–86. http://dx.doi.org/10.1007/s11434-016-1047-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Fiechter, Sebastian, und Nitin Chopra. „Energy conversion and storage“. Nanomaterials and Energy 1, Nr. 2 (März 2012): 63–64. http://dx.doi.org/10.1680/nme.12.00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Ramasamy, R. P. „Bioelectrochemical Energy Conversion Technologies“. Interface magazine 24, Nr. 3 (01.01.2015): 53. http://dx.doi.org/10.1149/2.f03153if.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Chiu, Ching‐Sang. „Downslope modal energy conversion“. Journal of the Acoustical Society of America 95, Nr. 3 (März 1994): 1654–57. http://dx.doi.org/10.1121/1.408552.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Dürre, Peter, und Thomas Richard. „Microbial Energy Conversion revisited“. Current Opinion in Biotechnology 22, Nr. 3 (Juni 2011): 309–11. http://dx.doi.org/10.1016/j.copbio.2011.04.021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Takahashi, P., und A. Trenka. „Ocean thermal energy conversion“. Fuel and Energy Abstracts 37, Nr. 3 (Mai 1996): 201. http://dx.doi.org/10.1016/0140-6701(96)88809-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Barragán, V. María. „Membranes for Energy Conversion“. Membranes 13, Nr. 8 (17.08.2023): 735. http://dx.doi.org/10.3390/membranes13080735.

Der volle Inhalt der Quelle
Annotation:
In the modern world, the level of global energy consumption continues to increase, with current methods of energy generation still greatly dependent on fossil fuels, which will become less accessible in the not-so-distant future [...]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Dunbar, W. R., N. Lior und R. A. Gaggioli. „The Component Equations of Energy and Exergy“. Journal of Energy Resources Technology 114, Nr. 1 (01.03.1992): 75–83. http://dx.doi.org/10.1115/1.2905924.

Der volle Inhalt der Quelle
Annotation:
Energy conversion processes inherently have associated irreversibility. A better understanding of energy conversion will motivate intuition to create new energy-conversion and energy-utilization technology. In the present article, such understanding is further enhanced by decomposing the equations of energy and exergy (availability, available energy, useful energy) to reveal the reversible and irreversible parts of energy transformations. New definitions of thermal, strain, chemical, mechanical and thermochemical forms of energy/exergy are justified and expressions for these properties and their changes are rigorously developed. In the resulting equations, terms appear which explicitly reveal the interconversions between the different forms of energy/exergy, including the breakdown into reversible and irreversible conversions. The equations are valid for chemically reacting or non-reacting inelastic fluids, with or without diffusion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Liu, Fu-Hu, Ya-Hui Chen, Ya-Qin Gao und Er-Qin Wang. „On Current Conversion between Particle Rapidity and Pseudorapidity Distributions in High Energy Collisions“. Advances in High Energy Physics 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/710534.

Der volle Inhalt der Quelle
Annotation:
In high energy collisions, one usually needs to give a conversion between the particle rapidity and pseudorapidity distributions. Currently, two equivalent conversion formulas are used in experimental and theoretical analyses. An investigation in the present work shows that the two conversions are incomplete. Then, we give a revision on the current conversion between the particle rapidity and pseudorapidity distributions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Viveiros, Carla, Rui Melicio, Victor Mendes und Jose Igreja. „Adaptive and predictive controllers applied to onshore wind energy conversion system“. AIMS Energy 6, Nr. 4 (2018): 615–31. http://dx.doi.org/10.3934/energy.2018.4.615.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Nakagawa, T. „Conversion of vortex energy into acoustic energy“. Naturwissenschaften 74, Nr. 7 (Juli 1987): 338–39. http://dx.doi.org/10.1007/bf00367929.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Hellebrand, H. J., V. Scholz und J. Kern. „Nitrogen conversion and nitrous oxide hot spots in energy crop cultivation“. Research in Agricultural Engineering 54, No. 2 (24.06.2008): 58–67. http://dx.doi.org/10.17221/1001-rae.

Der volle Inhalt der Quelle
Annotation:
Since 1999, nitrous oxide (N<sub>2</sub>O) soil emissions from sites cultivated with energy plants have been measured by gas chromatography and gas flux chambers in experimental fields. The main aim of this study was the nitrogen conversion factor and its variability for sandy soils under climatic conditions of Central Europe. Annual plants (hemp, rape, rye, sorghum, triticale) and perennial plants (grass, perennial rye, poplar, willow) were fertilised with three different levels of nitrogen (150 kg N/ha/year, 75 kg N/ha/year, and none). The annual nitrogen conversion factors were derived from the annual mean differences between the fertilised sites and non-fertilised control sites. The mean nitrogen conversion factor for the non-cultivated soils was lower (perennial crops: 0.4%) than that for the regularly cultivated soils (annual crops: 0.9%). Few times, enhanced N<sub>2</sub>O emission spots with maxima above 1000 &mu;<sub>2</sub>O/m<sup>2</sup>/h, lasting for several weeks, were observed in the course of measurements. The influence of these local peak emissions on the nitrogen conversion factor is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Kim, Jaehyung, Hyemin Koo, Wonseok Chang und Daewon Pak. „Biological conversion of CO2to CH4in anaerobic fixed bed reactor under continuous operation“. Journal of Energy Engineering 22, Nr. 4 (31.12.2013): 347–54. http://dx.doi.org/10.5855/energy.2013.22.4.347.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Bagherian, Anthony, Mark Gershon und Sunil Kumar. „Unveiling the nexus of digital conversion and clean energy: An ISM-MICMAC and DEMATEL perspective“. AIMS Energy 11, Nr. 5 (2023): 810–45. http://dx.doi.org/10.3934/energy.2023040.

Der volle Inhalt der Quelle
Annotation:
<abstract> <p>Our aim is to develop a hierarchical framework that assesses the interdependence of digital metrics impacting clean energy in the European energy market. The framework is evaluated to determine its applicability to clean energy and implementation. We utilize a taxonomy of digital metrics with the MICMAC ("Matrice d'Impacts Croisés-Multiplication Appliquée à un Classement") methodology and a questionnaire-based survey using DEMATEL to validate the framework. This results in an efficient hierarchy and contextual relationship between key metrics in the European energy industry. We investigate and simulate ten key metrics of digital conversion for clean energy in the energy domain, identifying the most significant effects, including the "decision-making process" the "sustainable value chain" the "sustainable supply chain", "sustainable product life cycle", and the "interconnection of diverse equipment". The MICMAC methodology is used to classify these parameters for a better understanding of their structure, and DEMATEL is employed to examine cause-and-effect relationships and linkages. The practical implications of this framework can assist institutions, experts, and academics in forecasting essential metrics and can complement existing studies on digital conversion and clean energy. By prioritizing these key parameters, improvements in convenience, efficiency, and the reduction of product fossilization can be achieved. The value and originality of this study lie in the novel advancements in analyzing digital conversion metrics in the European energy industry using a cohesive ISM, MICMAC, and DEMATEL framework.</p> </abstract>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Maria Alexandre Linard, Fabíola, Cícero Marcos Tavares Cruz, Demercil de Souza Oliveira Júnior, René Pastor Torrico Bascopé und Gustavo Alves de Lima Henn. „Double Conversion Uninterrupted Energy System With Rectifier And The Inverter Integration“. Eletrônica de Potência 15, Nr. 2 (01.05.2010): 59–66. http://dx.doi.org/10.18618/rep.2010.2.059066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Olabisi, O., P. C. Amalu, A. Eyitayo, Adegboyega Adegboyega, H. O. Oyeshola und C. O. Ogunkoya. „Overview of Energy Generation and Conversion Schemes in Sub-Saharan Settlement“. International Journal of Research Publication and Reviews 4, Nr. 7 (Juli 2023): 1400–1407. http://dx.doi.org/10.55248/gengpi.4.723.48276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie