Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „COPPER OXIDE NANOPARTICLE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "COPPER OXIDE NANOPARTICLE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "COPPER OXIDE NANOPARTICLE"
Saif Hasan, Syed, Sanjay Singh, Rasesh Y. Parikh, Mahesh S. Dharne, Milind S. Patole, B. L. V. Prasad und Yogesh S. Shouche. „Bacterial Synthesis of Copper/Copper Oxide Nanoparticles“. Journal of Nanoscience and Nanotechnology 8, Nr. 6 (01.06.2008): 3191–96. http://dx.doi.org/10.1166/jnn.2008.095.
Der volle Inhalt der QuelleLiang, Septimus H., Shiliang Wang und David B. Pedersen. „Adsorption of HCN onto Copper@Copper-Oxide Core–Shell Nanoparticle Systems“. Adsorption Science & Technology 27, Nr. 4 (Mai 2009): 349–61. http://dx.doi.org/10.1260/026361709790252632.
Der volle Inhalt der QuelleHanisha R, Hanisha R., Udayakumar R. Udayakumar R, Selvayogesh S. Selvayogesh S, Keerthivasan P. Keerthivasan P und Gnanasekaran R. Gnanasekaran R. „Anti Fungal Activity of Green Synthesized Copper Nanoparticles Using Plant Extract of Bryophyllum Pinnatum (Lam.) and Polyalthia Longifolia (Sonn.) R“. Biosciences Biotechnology Research Asia 20, Nr. 1 (30.03.2023): 317–28. http://dx.doi.org/10.13005/bbra/3091.
Der volle Inhalt der QuelleLakshmi, Augustine, Athisayaraj Emi Princess Prasanna und Chinnapiyan Vedhi. „Synthesis, Characterisation and Capacitive Behaviour of Poly(3,4-ethylenedioxythiophene)-Copper Oxide Nanocomposites“. Advanced Materials Research 678 (März 2013): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.678.273.
Der volle Inhalt der QuelleDyah Rifani, Nabila, Rebriarina Hapsari, Tyas Prihatiningsih und Ali Khumaeni. „Synthesis, characterization, and antimicrobial properties of copper oxide nanoparticles produced by laser ablation method in chitosan solution“. Journal of Applied Research and Technology, Nr. 2 (27.04.2023): 196–204. http://dx.doi.org/10.22201/icat.24486736e.2023.21.2.1596.
Der volle Inhalt der QuelleMohamed, HudaElslam, Unal Camdali, Atilla Biyikoglu und Metin Aktas. „Enhancing the Performance of a Vapour Compression Refrigerator System Using R134a with a CuO/CeO2 Nano-refrigerant“. Strojniški vestnik - Journal of Mechanical Engineering 68, Nr. 6 (22.06.2022): 395–410. http://dx.doi.org/10.5545/sv-jme.2021.7454.
Der volle Inhalt der QuelleSamuel Paul, Akintunde Sheyi, Iliya Daniel Bangu, Sani Idris Abubakar und Muawiyya Muazu Muhammad. „Biological synthesis and characterization of copper oxide nanoparticles using aqueous Psidium guajava leave extract and study of antibacterial activity of the copper oxide nanoparticles on Escherichia coli and Staphylococcus aureus“. World Journal of Advanced Research and Reviews 9, Nr. 1 (30.01.2021): 114–20. http://dx.doi.org/10.30574/wjarr.2021.9.1.0513.
Der volle Inhalt der QuelleCui, Wen Ying, Hyun Jin Yoo, Yun Guang Li, Changyoon Baek und Junhong Min. „Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function“. Journal of Nanoscience and Nanotechnology 21, Nr. 8 (01.08.2021): 4174–78. http://dx.doi.org/10.1166/jnn.2021.19379.
Der volle Inhalt der QuelleSaputra, Ferry, Boontida Uapipatanakul, Jiann-Shing Lee, Shih-Min Hung, Jong-Chin Huang, Yun-Chieh Pang, John Emmanuel R. Muñoz, Allan Patrick G. Macabeo, Kelvin H. C. Chen und Chung-Der Hsiao. „Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos“. International Journal of Molecular Sciences 22, Nr. 15 (31.07.2021): 8259. http://dx.doi.org/10.3390/ijms22158259.
Der volle Inhalt der QuelleBlinov, A. V., А. А. Gvozdenko, A. B. Golik, А. А. Blinova, K. S. Slyadneva, M. A. Pirogov und D. G. Maglakelidze. „Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability“. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, Nr. 4 (103) (August 2022): 95–109. http://dx.doi.org/10.18698/1812-3368-2022-4-95-109.
Der volle Inhalt der QuelleDissertationen zum Thema "COPPER OXIDE NANOPARTICLE"
Dywili, Nomxolisi Ruth. „Development of Metal Nanoparticle-Doped Polyanilino-Graphene Oxide High Performance Supercapacitor Cells“. University of the Western Cape, 2018. http://hdl.handle.net/11394/6251.
Der volle Inhalt der QuelleSupercapacitors, also known as ultracapacitors or electrochemical capacitors, are considered one of the most important subjects concerning electricity or energy storage which has proven to be problematic for South Africa. In this work, graphene oxide (GO) was supported with platinum, silver and copper nanoparticles anchored with dodecylbenzenesulphonic acid (DBSA) doped polyaniline (PANI) to form nanocomposites. Their properties were investigated with different characterization techniques. The high resolution transmission electron microscopy (HRTEM) revealed GO's nanosheets to be light, flat, transparent and appeared to be larger than 1.5 ?m in thickness. This was also confirmed by high resolution scanning electron microscopy (HRSEM) with smooth surfaces and wrinkled edges observed with the energy dispersive X-ray analysis (EDX) confirming the presence of the functional groups such as carbon and oxygen. The HRTEM analysis of decorated GO with platinum, silver and copper nanoparticles (NPs) revealed small and uniformly dispersed NPs on the surface of GO with mean particle sizes of 2.3 ± 0.2 nm, 2.6 ± 0.3 nm and 3.5 ± 0.5 nm respectively and the surface of GO showed increasing roughness as observed in HRSEM micrographs. The X-ray fluorescence microscopy (XRF) and EDX confirmed the presence of the nanoparticles on the surface of GO as platinum, silver and copper which appeared in abundance in each spectra. Anchoring the GO with DBSA doped PANI revealed that single GO sheets were embedded into the polymer latex, which caused the DBSA-PANI particles to become adsorbed on their surfaces. This process then appeared as dark regions in the HRTEM images. Morphological studies by HRSEM also supported that single GO sheets were embedded into the polymer latex as composite formation appeared aggregated and as bounded particles with smooth and toothed edges.
Roussey, Arthur. „Preparation of Copper-based catalysts for the synthesis of Silicon nanowires“. Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10164.
Der volle Inhalt der QuelleThe work presented in this PhD thesis aimed at the preparation of copper nanoparticles of controllable size and their utilization as catalysts for the growth of silicon nanowires in a process compatible with standard CMOS technology and at low temperature (< 450°C). The growth of silicon nanowires by Chemical Vapor Deposition (CVD) via the catalytic decomposition of a silicon precursor on metallic nanoparticles at low temperature (Vapor Solid-Solid process) was demonstrated to be possible from an oxidized Cu thin film. However, this process does not allow the control over nanowires diameter, which is controlled by the diameter of the nanoparticle of catalyst. In this PhD is presented a fully bottom-up approach to prepare copper nanoparticles of controllable size directly on a surface without the help of external stabilizer by mean of surface organometallic chemistry. First, the preparation of copper nanoparticles is demonstrated on 3D substrates (silica and titanium nitride nanoparticles), along with the fine comprehension of the formation mechanism of the nanoparticles as a function of the surface properties. Then, this methodology is transferred to planar (2D) substrates typically used in microelectronics (silicon wafers). Surface structure is demonstrated to direct the Cu nanoparticles diameter between 3 to 40 nm. The similarities between the 2D and 3D substrates are discussed. Finally, the activity of the Copper nanoparticles in the growth of Silicon nanowire is presented and it is demonstrated that in our conditions a critical diameter may exist above which the growth occurs
Carew, Alexander Jon. „Fundamental studies into the catalytic properties of metal-oxide supported gold and copper nanoparticles“. Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367710.
Der volle Inhalt der QuelleYousef, Narin. „Solution-based and flame spray pyrolysis synthesis of cupric oxide nanostructures and their potential application in dye-sensitized solar cells“. Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119329.
Der volle Inhalt der QuelleMcManus, Paul. „Rhizosphere Interactions Between Copper Oxide Nanoparticles and Wheat Root Exudate in a Sand Matrix; Influences on Bioavailability and Uptake“. DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5058.
Der volle Inhalt der QuelleMårtensson, Niklas. „Optical Properties of Silica-Copper Oxide Thin Films Prepared by Spin Coating“. Thesis, Linköpings universitet, Tillämpad optik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-71188.
Der volle Inhalt der QuelleTejpal, Jyoti. „The use of metal and metal oxide nanoparticles against biofilms“. Thesis, De Montfort University, 2016. http://hdl.handle.net/2086/13114.
Der volle Inhalt der QuelleHortin, Joshua. „Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots“. DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6895.
Der volle Inhalt der QuelleIzaak, T. I., D. О. Martynova, V. V. Maas, E. М. Slavinskaya, А. I. Boronin und Y. W. Chen. „Synthesis and Properties of Ag / CuO / SiO2 Nanocomposites“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35611.
Der volle Inhalt der QuelleBottois, Clément. „Nanoparticules pour la réalisation de couches de transport de trous appliquées au photovoltaïque organique“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI025/document.
Der volle Inhalt der QuelleIn organic solar cells, a doped polymer is the most used material for hole transport between the active layer and the electrode, but his stability can be an important issue. The goal of this PhD thesis was to develop inorganic materials, expected to be more stable, in order to replace polymer based hole transporting layers. Another requirement was to keep the compatibility with solution-based deposition methods. The target was to develop nanoparticle dispersions, deposited at low temperature and giving directly a functional layer, without the need of further treatments which are usually required via sol-gel processes. A first objective of the present work was thus the elaboration of nanoparticles of tungsten oxide, hydrated or non-hydrated, and copper thiocyanate. A microwave-assisted heating synthesis has been used for tungsten oxide, leading to mono-dispersed particles around 30 nm. Concerning copper thiocyanate, a ball milling technique has been chosen. The process parameters have been optimized to obtain nanoparticles to narrow the size distribution as much as possible. The deposition of the nanoparticles has allowed the formation of thin layers and the characterization of their optoelectronic properties, such as work function, which was shown to be a relevant parameter for a use in devices. Organic solar cells with standard or inverted structures have been fabricated using these materials as a hole transporting layer. Good photovoltaic performances have been obtained, especially in the inverted structure, in which the possibility to use copper thiocyanate has been demonstrated for the first time. Ageing experiments under light in a controlled atmosphere have also been carried out and have shown a rapid drop in performances for these cells compared to cells incorporating polymer based hole transport layers
Buchteile zum Thema "COPPER OXIDE NANOPARTICLE"
Okanigbe, Daniel Ogochukwu. „Extraction of Copper Oxide (II): Copper Oxide Nanoparticles“. In Resource Recovery and Recycling from Waste Metal Dust, 107–31. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22492-8_6.
Der volle Inhalt der QuelleDas, Dudul, und Pankaj Kalita. „Performance Improvement of a Novel Flat Plate Photovoltaic Thermal (PV/T) System Using Copper Oxide Nanoparticle—Water as Coolant“. In Springer Proceedings in Energy, 97–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63085-4_14.
Der volle Inhalt der QuelleArun Kumar, A., R. Subramaniyan@Raja, G. Padmasree, Kodumuri Veerabhadra Rao, K. Anuradha und A. Rathika. „Copper Oxide Nanoparticles for Energy Storage Applications“. In Materials for Sustainable Energy Storage at the Nanoscale, 233–40. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003355755-20.
Der volle Inhalt der QuelleSaha, Ishita, Parimal Karmakar und Debalina Bhattacharya. „Fungi-Mediated Fabrication of Copper Nanoparticles and Copper Oxide Nanoparticles, Physical Characterization and Antimicrobial Activity“. In Mycosynthesis of Nanomaterials, 112–25. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003327387-7.
Der volle Inhalt der QuelleIbrahim, Suriani, Nurul Zariyah Jakaria@Zakaria, Shaifulazuar Rozali, Nik Nazri Nik Ghazali, Mohd Sayuti Ab Karim und Mohd Faizul Mohd Sabri. „Biosynthesis of Copper Oxide Nanoparticles Using Camellia Sinensis Plant Powder“. In Advances in Material Sciences and Engineering, 233–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8297-0_26.
Der volle Inhalt der QuelleSingh, Ravindra Pratap. „Potential of Biogenic Plant-Mediated Copper and Copper Oxide Nanostructured Nanoparticles and Their Utility“. In Plant Nanobionics, 115–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16379-2_5.
Der volle Inhalt der QuelleAdhikari, Tapan, Garima Dube, S. Kundu und A. K. Patra. „Impact of Copper Oxide Nanoparticles on Growth of Different Bacterial Species“. In Water Science and Technology Library, 47–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5798-4_5.
Der volle Inhalt der QuelleJoshi, Archana, Ashutosh Sharma, Rakesh Kumar Bachheti, Azamal Husen und Vinod Kumar Mishra. „Plant-Mediated Synthesis of Copper Oxide Nanoparticles and Their Biological Applications“. In Nanomaterials and Plant Potential, 221–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05569-1_8.
Der volle Inhalt der QuelleAlcalà, Jordi, Mercè Roig, Sergi Martín, Aleix Barrera, Alejandro Fernández-Rodríguez, Alberto Pomar, Lluís Balcells, Mariona Coll, Narcís Mestres und Anna Palau. „Potential of Copper Oxide High-Temperature Superconductors for Tailoring Ferromagnetic Spin Textures“. In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 167–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_7.
Der volle Inhalt der QuelleKhan, K. A., M. Shaiful Islam, Abdul Awal, M. N. Islam Khan und A. K. M. Atique Ullah. „Studies on Performances of Copper Oxide Nanoparticles from Catharanthus Roseus Leaf Extract“. In Lecture Notes in Electrical Engineering, 179–90. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1570-2_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "COPPER OXIDE NANOPARTICLE"
Zlebic, C., Lj Zivanov, N. Blaz, M. Kisic und M. Lukovic. „Characterization of Printed Humidity Sensor Based on Nanoparticle Copper Oxide“. In 2020 23rd International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). IEEE, 2020. http://dx.doi.org/10.1109/ddecs50862.2020.9095702.
Der volle Inhalt der QuelleFujino, M., M. Akaike, N. Matsuoka und T. Suga. „Reduction Reaction Analysis of Nanoparticle Copper Oxide by Formic Acid“. In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.m-5-03.
Der volle Inhalt der QuelleMcCants, Dale A., Jamil A. Khan, Andrew M. Hayes und Aly Shaaban. „Evaluating the Thermal Characteristics of Copper-II and Zinc-Oxide Nanofluids Flowing Over a Heated Flat Plate“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56141.
Der volle Inhalt der QuelleSofiya Dayana, K., und R. Jothimani. „Preparation and characterization of copper oxide nanoparticle-determination of its structural and optical properties“. In 2ND INTERNATIONAL CONFERENCE ON MATERIALS FOR ENERGY AND ENVIRONMENT 2020. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0140312.
Der volle Inhalt der QuelleTorii, Shuichi. „Turbulent Thermal Fluid Flow Transport Phenomena of Aqueous Suspensions of Nano-Particles“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18090.
Der volle Inhalt der QuelleKedzierski, Mark A. „Effect of CuO Nanoparticle Concentration on R134A/Lubricant Pool Boiling Heat Transfer“. In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52116.
Der volle Inhalt der QuelleTorii, Shuichi. „Thermal Transport Phenomenon in Circular Pipe Flow Using Different Nanofluids“. In ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ipack2013-73043.
Der volle Inhalt der QuelleFan, Liwu, und J. M. Khodadadi. „Experimental Verification of Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM)“. In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44165.
Der volle Inhalt der QuelleKhodadadi, J. M., und Liwu Fan. „Expedited Freezing of Nanoparticle-Enhanced Phase Change Materials (NEPCM) Exhibited Through a Simple 1-D Stefan Problem Formulation“. In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88409.
Der volle Inhalt der QuelleO’Hanley, Harry, Jacopo Buongiorno, Thomas McKrell und Lin-wen Hu. „Measurement and Model Correlation of Specific Heat Capacity of Water-Based Nanofluids With Silica, Alumina and Copper Oxide Nanoparticles“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62054.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "COPPER OXIDE NANOPARTICLE"
Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova und Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, Januar 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Der volle Inhalt der Quelle