Zeitschriftenartikel zum Thema „COPPER OXIDE NANOPARTICLE“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "COPPER OXIDE NANOPARTICLE" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Saif Hasan, Syed, Sanjay Singh, Rasesh Y. Parikh, Mahesh S. Dharne, Milind S. Patole, B. L. V. Prasad und Yogesh S. Shouche. „Bacterial Synthesis of Copper/Copper Oxide Nanoparticles“. Journal of Nanoscience and Nanotechnology 8, Nr. 6 (01.06.2008): 3191–96. http://dx.doi.org/10.1166/jnn.2008.095.
Der volle Inhalt der QuelleLiang, Septimus H., Shiliang Wang und David B. Pedersen. „Adsorption of HCN onto Copper@Copper-Oxide Core–Shell Nanoparticle Systems“. Adsorption Science & Technology 27, Nr. 4 (Mai 2009): 349–61. http://dx.doi.org/10.1260/026361709790252632.
Der volle Inhalt der QuelleHanisha R, Hanisha R., Udayakumar R. Udayakumar R, Selvayogesh S. Selvayogesh S, Keerthivasan P. Keerthivasan P und Gnanasekaran R. Gnanasekaran R. „Anti Fungal Activity of Green Synthesized Copper Nanoparticles Using Plant Extract of Bryophyllum Pinnatum (Lam.) and Polyalthia Longifolia (Sonn.) R“. Biosciences Biotechnology Research Asia 20, Nr. 1 (30.03.2023): 317–28. http://dx.doi.org/10.13005/bbra/3091.
Der volle Inhalt der QuelleLakshmi, Augustine, Athisayaraj Emi Princess Prasanna und Chinnapiyan Vedhi. „Synthesis, Characterisation and Capacitive Behaviour of Poly(3,4-ethylenedioxythiophene)-Copper Oxide Nanocomposites“. Advanced Materials Research 678 (März 2013): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.678.273.
Der volle Inhalt der QuelleDyah Rifani, Nabila, Rebriarina Hapsari, Tyas Prihatiningsih und Ali Khumaeni. „Synthesis, characterization, and antimicrobial properties of copper oxide nanoparticles produced by laser ablation method in chitosan solution“. Journal of Applied Research and Technology, Nr. 2 (27.04.2023): 196–204. http://dx.doi.org/10.22201/icat.24486736e.2023.21.2.1596.
Der volle Inhalt der QuelleMohamed, HudaElslam, Unal Camdali, Atilla Biyikoglu und Metin Aktas. „Enhancing the Performance of a Vapour Compression Refrigerator System Using R134a with a CuO/CeO2 Nano-refrigerant“. Strojniški vestnik - Journal of Mechanical Engineering 68, Nr. 6 (22.06.2022): 395–410. http://dx.doi.org/10.5545/sv-jme.2021.7454.
Der volle Inhalt der QuelleSamuel Paul, Akintunde Sheyi, Iliya Daniel Bangu, Sani Idris Abubakar und Muawiyya Muazu Muhammad. „Biological synthesis and characterization of copper oxide nanoparticles using aqueous Psidium guajava leave extract and study of antibacterial activity of the copper oxide nanoparticles on Escherichia coli and Staphylococcus aureus“. World Journal of Advanced Research and Reviews 9, Nr. 1 (30.01.2021): 114–20. http://dx.doi.org/10.30574/wjarr.2021.9.1.0513.
Der volle Inhalt der QuelleCui, Wen Ying, Hyun Jin Yoo, Yun Guang Li, Changyoon Baek und Junhong Min. „Electrospun Nanofibers Embedded with Copper Oxide Nanoparticles to Improve Antiviral Function“. Journal of Nanoscience and Nanotechnology 21, Nr. 8 (01.08.2021): 4174–78. http://dx.doi.org/10.1166/jnn.2021.19379.
Der volle Inhalt der QuelleSaputra, Ferry, Boontida Uapipatanakul, Jiann-Shing Lee, Shih-Min Hung, Jong-Chin Huang, Yun-Chieh Pang, John Emmanuel R. Muñoz, Allan Patrick G. Macabeo, Kelvin H. C. Chen und Chung-Der Hsiao. „Co-Treatment of Copper Oxide Nanoparticle and Carbofuran Enhances Cardiotoxicity in Zebrafish Embryos“. International Journal of Molecular Sciences 22, Nr. 15 (31.07.2021): 8259. http://dx.doi.org/10.3390/ijms22158259.
Der volle Inhalt der QuelleBlinov, A. V., А. А. Gvozdenko, A. B. Golik, А. А. Blinova, K. S. Slyadneva, M. A. Pirogov und D. G. Maglakelidze. „Synthesising Copper Oxide Nanoparticles and Investigating the Effect of Dispersion Medium Parameters on their Aggregate Stability“. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, Nr. 4 (103) (August 2022): 95–109. http://dx.doi.org/10.18698/1812-3368-2022-4-95-109.
Der volle Inhalt der QuelleMerah, Abdelali, Abdenabi Abidi, Hana Merad, Noureddine Gherraf, Mostepha Iezid und Abdelghani Djahoudi. „Comparative Study of the Bacteriological Activity of Zinc Oxide and Copper Oxide Nanoparticles“. Acta Scientifica Naturalis 6, Nr. 1 (01.03.2019): 63–72. http://dx.doi.org/10.2478/asn-2019-0009.
Der volle Inhalt der QuelleCuevas, R., N. Durán, M. C. Diez, G. R. Tortella und O. Rubilar. „Extracellular Biosynthesis of Copper and Copper Oxide Nanoparticles byStereum hirsutum, a Native White-Rot Fungus from Chilean Forests“. Journal of Nanomaterials 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/789089.
Der volle Inhalt der QuellePodlesnov, E., M. G. Nigamatdianov, A. O. Safronova und M. V. Dorogov. „Lithium Polymer Battery with PVDF-based Electrolyte Doped with Copper Oxide Nanoparticles: Manufacturing Technology and Properties“. Reviews on advanced materials and technologies 3, Nr. 3 (2021): 27–31. http://dx.doi.org/10.17586/2687-0568-2021-3-3-27-31.
Der volle Inhalt der QuelleJayakrishnan, Priyanga, Sirajunnisa Abdul Razack, Keerthana Sivanesan, Pavithra Sellaperumal, Geethalakshmi Ramakrishnan, Sangeetha Subramanian und Renganathan Sahadevan. „A facile approach towards copper oxide nanoparticles synthesis using Spirulina platensis and assessment of its biological activities“. Brazilian Journal of Biological Sciences 5, Nr. 10 (2018): 433–42. http://dx.doi.org/10.21472/bjbs.051020.
Der volle Inhalt der QuelleDaigle, Jean-Christophe, und Jerome P. Claverie. „A Simple Method for Forming Hybrid Core-Shell Nanoparticles Suspended in Water“. Journal of Nanomaterials 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/609184.
Der volle Inhalt der QuelleSadabadi, Hamed, Adeleh Aftabtalab, Shirzad Zafarian, Shilpa Chakra, K. Venkateswara Rao und Sarah Shaker. „Influence of Fuel and Condition in Combustion Synthesis on Properties of Copper (II) Oxide Nanoparticle“. Advanced Materials Research 829 (November 2013): 152–56. http://dx.doi.org/10.4028/www.scientific.net/amr.829.152.
Der volle Inhalt der QuelleJaber, Shaimaa Hamed. „Comparing study of CuO synthesized by biological and electrochemical methods for biological activity“. Al-Mustansiriyah Journal of Science 30, Nr. 1 (15.08.2019): 94. http://dx.doi.org/10.23851/mjs.v30i1.389.
Der volle Inhalt der QuelleFreidoonimehr, Navid, Behnam Rostami und Mohammad Mehdi Rashidi. „Predictor homotopy analysis method for nanofluid flow through expanding or contracting gaps with permeable walls“. International Journal of Biomathematics 08, Nr. 04 (22.06.2015): 1550050. http://dx.doi.org/10.1142/s1793524515500503.
Der volle Inhalt der QuelleRajeshkumar, S., Soumya Menon, Venkat Kumar S, M. Ponnanikajamideen, Daoud Ali und Kalirajan Arunachalam. „Anti-inflammatory and Antimicrobial Potential of Cissus quadrangularis-Assisted Copper Oxide Nanoparticles“. Journal of Nanomaterials 2021 (27.12.2021): 1–11. http://dx.doi.org/10.1155/2021/5742981.
Der volle Inhalt der QuelleDutta, Biplab, Epsita Kar, Navonil Bose und Sampad Mukherjee. „Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles“. RSC Advances 5, Nr. 127 (2015): 105422–34. http://dx.doi.org/10.1039/c5ra21903e.
Der volle Inhalt der QuelleGu, Wei Bing, und Zheng Cui. „Intense Pulsed Light Sintering of Copper Nanoink for Conductive Copper Film“. Applied Mechanics and Materials 748 (April 2015): 187–92. http://dx.doi.org/10.4028/www.scientific.net/amm.748.187.
Der volle Inhalt der QuelleGhareeb, Ozdan Akram, und Samed Abduljabbar Ramadhan. „Prophylactic Efficacy of Silymarin upon Renal Dysfunction Induced by Copper Oxide Nanoparticle“. Journal Healthcare Treatment Development, Nr. 36 (23.09.2023): 29–38. http://dx.doi.org/10.55529/jhtd.36.29.38.
Der volle Inhalt der QuelleJadidian, Reza, Hooshang Parham, Sara Haghtalab und Razieh Asrarian. „Removal of Copper from Industrial Water and Wastewater Using Magnetic Iron Oxide Nanoparticles Modified with Benzotriazole“. Advanced Materials Research 829 (November 2013): 742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.829.742.
Der volle Inhalt der QuelleRajapaksha, Piumie, Samuel Cheeseman, Stuart Hombsch, Billy James Murdoch, Sheeana Gangadoo, Ewan W. Blanch, Yen Truong et al. „Antibacterial Properties of Graphene Oxide–Copper Oxide Nanoparticle Nanocomposites“. ACS Applied Bio Materials 2, Nr. 12 (18.11.2019): 5687–96. http://dx.doi.org/10.1021/acsabm.9b00754.
Der volle Inhalt der QuelleSubashini, K., S. Prakash und V. Sujatha. „Anticancer Activity of Copper Oxide Nanoparticles Synthesized from Brassia actinophylla Flower Extract“. Asian Journal of Chemistry 31, Nr. 9 (31.07.2019): 1899–904. http://dx.doi.org/10.14233/ajchem.2019.22035.
Der volle Inhalt der QuelleSowbakkiyalakshmi B. und Kolanjinathan K. „Myconanosynthesis of Copper Oxide Nanoparticles from Talaromyces versatilis against Human Bacterial Pathogens“. UTTAR PRADESH JOURNAL OF ZOOLOGY 44, Nr. 21 (12.10.2023): 274–81. http://dx.doi.org/10.56557/upjoz/2023/v44i213699.
Der volle Inhalt der QuelleChang, Ho, Chih Hung Lo, Tsing Tshih Tsung, Y. Y. Cho, D. C. Tien, Liang Chia Chen und C. H. Thai. „Temperature Effect on the Stability of CuO Nanofluids Based on Measured Particle Distribution“. Key Engineering Materials 295-296 (Oktober 2005): 51–56. http://dx.doi.org/10.4028/www.scientific.net/kem.295-296.51.
Der volle Inhalt der QuelleSreekala, G., Beevi A. Fathima und B. Beena. „Adsorption of Lead (Ii) Ions by Ecofriendly Copper Oxide Nanoparticles“. Oriental Journal of Chemistry 35, Nr. 6 (21.11.2019): 1731–36. http://dx.doi.org/10.13005/ojc/350615.
Der volle Inhalt der QuelleFreidoonimehr, Navid, Behnam Rostami, Mohammad Mehdi Rashidi und Ebrahim Momoniat. „Analytical Modelling of Three-Dimensional Squeezing Nanofluid Flow in a Rotating Channel on a Lower Stretching Porous Wall“. Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/692728.
Der volle Inhalt der QuellePalanisamy, Karumalaiyan, Velayutham Gurunathan und Jothilingam Sivapriya. „Ultrasonic Assisted Facile Synthesis of CuO Nanoparticles and Used as Insecticide for Mosquito Control“. Asian Journal of Chemistry 35, Nr. 4 (2023): 986–90. http://dx.doi.org/10.14233/ajchem.2023.23962.
Der volle Inhalt der QuelleKao, Mu Jung, Chih Hung Lo, Tsing Tshih Tsung und Hong Ming Lin. „Development of Pressure Technique of Brake Nanofluids from an Arc Spray Nanoparticles Synthesis System“. Materials Science Forum 505-507 (Januar 2006): 49–54. http://dx.doi.org/10.4028/www.scientific.net/msf.505-507.49.
Der volle Inhalt der QuelleJournal, Baghdad Science. „Fabricated of Cu Doped ZnO Nanoparticles for Solar Cell Application“. Baghdad Science Journal 15, Nr. 2 (04.06.2018): 198–204. http://dx.doi.org/10.21123/bsj.15.2.198-204.
Der volle Inhalt der QuelleMedvedeva, Xenia, Aleksandra Vidyakina, Feng Li, Andrey Mereshchenko und Anna Klinkova. „Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles“. Nanomaterials 9, Nr. 10 (11.10.2019): 1445. http://dx.doi.org/10.3390/nano9101445.
Der volle Inhalt der QuelleMsebawi, Muntadher Sabah, Zulkiflle Leman, Shazarel Shamsudin, Suraya Mohd Tahir, Che Nor Aiza Jaafar, Azmah Hanim Mohamed Ariff, Nur Ismarrubie Zahari und Mohammed H. Rady. „The Effects of CuO and SiO2 on Aluminum AA6061 Hybrid Nanocomposite as Reinforcements: A Concise Review“. Coatings 11, Nr. 8 (15.08.2021): 972. http://dx.doi.org/10.3390/coatings11080972.
Der volle Inhalt der QuelleHackett, Cannon, Mojtaba Abolhassani, Lauren F. Greenlee und Audie K. Thompson. „Ultrafiltration Membranes Functionalized with Copper Oxide and Zwitterions for Fouling Resistance“. Membranes 12, Nr. 5 (23.05.2022): 544. http://dx.doi.org/10.3390/membranes12050544.
Der volle Inhalt der QuelleParimala, Lakshmikanthan, und J. Santhanalakshmi. „Oxidative Degradation of Rhodamine B Catalysed by Copper Oxide Nanoparticles in Aqueous Medium“. Advanced Materials Research 584 (Oktober 2012): 267–71. http://dx.doi.org/10.4028/www.scientific.net/amr.584.267.
Der volle Inhalt der QuelleWang, Qing, und Manel del Valle. „Sensors for the Determination of Organic Load (Chemical Oxygen Demand) Utilizing Copper/Copper Oxide Nanoparticle Electrodes“. Proceedings 42, Nr. 1 (14.11.2019): 63. http://dx.doi.org/10.3390/ecsa-6-06564.
Der volle Inhalt der QuelleSalim, E., S. R. Bobbara, A. Oraby und J. M. Nunzi. „Copper oxide nanoparticle doped bulk-heterojunction photovoltaic devices“. Synthetic Metals 252 (Juni 2019): 21–28. http://dx.doi.org/10.1016/j.synthmet.2019.04.006.
Der volle Inhalt der QuelleSemboshi, Satoshi, Yasuhiro Sakamoto, Hiroyuki Inoue, Akihiro Iwase und Naoya Masahashi. „Electroforming of oxide-nanoparticle-reinforced copper-matrix composite“. Journal of Materials Research 30, Nr. 4 (03.02.2015): 521–27. http://dx.doi.org/10.1557/jmr.2014.401.
Der volle Inhalt der QuelleParasuraman, Loganathan, Nirmal Peddisetty und Ganesan Periyannagounder. „Radiation effects on an unsteady MHD natural convective flow of a nanofluid past a vertical plate“. Thermal Science 19, Nr. 3 (2015): 1037–50. http://dx.doi.org/10.2298/tsci121208155p.
Der volle Inhalt der QuelleYousif, Alyaa Muhsin. „Physiological Effects of Nanoparticles Prepared from Olive Leaf Extract and Copper Oxide on Strawberry Plants“. South Asian Research Journal of Agriculture and Fisheries 5, Nr. 04 (19.07.2023): 28–35. http://dx.doi.org/10.36346/sarjaf.2023.v05i04.001.
Der volle Inhalt der QuelleLiu, Shao Hui, Yu Zhao und Xu Ran. „Microstructure and Properties of Co@RGO/Cu Composites by One-Step In Situ Reduction Method“. Materials Science Forum 993 (Mai 2020): 646–53. http://dx.doi.org/10.4028/www.scientific.net/msf.993.646.
Der volle Inhalt der QuelleOh, Gyung-Hwan, Hyun-Jun Hwang und Hak-Sung Kim. „Effect of copper oxide shell thickness on flash light sintering of copper nanoparticle ink“. RSC Advances 7, Nr. 29 (2017): 17724–31. http://dx.doi.org/10.1039/c7ra01429e.
Der volle Inhalt der QuelleArvand, Majid, Masoomeh Sayyar Ardaki und Mohammad Ali Zanjanchi. „A new sensing platform based on electrospun copper oxide/ionic liquid nanocomposite for selective determination of risperidone“. RSC Advances 5, Nr. 51 (2015): 40578–87. http://dx.doi.org/10.1039/c5ra02554k.
Der volle Inhalt der QuelleLotfi, Mohamed, Rodolphe Heyd, Abderrahim Bakak, Abdellah Hadaoui und Abdelaziz Koumina. „Experimental Measurements on the Thermal Conductivity of Glycerol-Based Nanofluids with Different Thermal Contrasts“. Journal of Nanomaterials 2021 (06.09.2021): 1–9. http://dx.doi.org/10.1155/2021/3190877.
Der volle Inhalt der QuelleZizzo, John. „Toxicity effects of Cubic Cu2O nanoparticles on defecation rate and length in C. Elegans“. Biomedical Research and Therapy 7, Nr. 10 (31.10.2020): 4045–51. http://dx.doi.org/10.15419/bmrat.v7i10.639.
Der volle Inhalt der QuelleSutunkova, Marina Petrovna, Larisa Ivanovna Privalova, Yuliya Vladimirovna Ryabova, Ilzira Amirovna Minigalieva, Anastasiya Valeryevna Tazhigulova, Alla Konstantinovna Labzova, Svetlana Vladislavovna Klinova et al. „Comparative assessment of the pulmonary effect in rats to a single intratracheal administration of selenium or copper oxide nanoparticles“. Toxicological Review 29, Nr. 6 (30.12.2021): 39–46. http://dx.doi.org/10.36946/0869-7922-2021-29-6-39-46.
Der volle Inhalt der QuelleStuder, Andreas M., Ludwig K. Limbach, Luu Van Duc, Frank Krumeich, Evagelos K. Athanassiou, Lukas C. Gerber, Holger Moch und Wendelin J. Stark. „Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles“. Toxicology Letters 197, Nr. 3 (01.09.2010): 169–74. http://dx.doi.org/10.1016/j.toxlet.2010.05.012.
Der volle Inhalt der QuelleNasibulin, Albert G., P. Petri Ahonen, Olivier Richard und Esko I. Kauppinen. „Copper and copper oxide nanoparticle formation by chemical vapor nucleation from copper (II) acetylacetonate“. Journal of Aerosol Science 31 (September 2000): 552–53. http://dx.doi.org/10.1016/s0021-8502(00)90563-9.
Der volle Inhalt der QuelleDukhinova, Marina S., Artur Y. Prilepskii, Alexander A. Shtil und Vladimir V. Vinogradov. „Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions“. Nanomaterials 9, Nr. 11 (16.11.2019): 1631. http://dx.doi.org/10.3390/nano9111631.
Der volle Inhalt der Quelle