Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Copper Photoredox catalysis.

Zeitschriftenartikel zum Thema „Copper Photoredox catalysis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Copper Photoredox catalysis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zhang, Yajing, Qian Wang, Zongsheng Yan, Donglai Ma und Yuguang Zheng. „Visible-light-mediated copper photocatalysis for organic syntheses“. Beilstein Journal of Organic Chemistry 17 (12.10.2021): 2520–42. http://dx.doi.org/10.3762/bjoc.17.169.

Der volle Inhalt der Quelle
Annotation:
Photoredox catalysis has been applied to renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C–H functionalization that have been reported over the past 5 years, are included.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McLean, Euan B., Vincent Gauchot, Sebastian Brunen, David J. Burns und Ai-Lan Lee. „Dual copper- and photoredox-catalysed C(sp2)–C(sp3) coupling“. Chemical Communications 55, Nr. 29 (2019): 4238–41. http://dx.doi.org/10.1039/c9cc01718f.

Der volle Inhalt der Quelle
Annotation:
The use of copper catalysis with visible light photoredox catalysis in a cooperative fashion has recently emerged as a versatile means of developing new C–C bond forming reactions. In this work, dual copper and photoredox catalysis is exploited to effect C(sp2)–C(sp3) cross-couplings between aryl boronic acids and benzyl bromides.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Querard, Pierre, Inna Perepichka, Eli Zysman-Colman und Chao-Jun Li. „Copper-catalyzed asymmetric sp3 C–H arylation of tetrahydroisoquinoline mediated by a visible light photoredox catalyst“. Beilstein Journal of Organic Chemistry 12 (06.12.2016): 2636–43. http://dx.doi.org/10.3762/bjoc.12.260.

Der volle Inhalt der Quelle
Annotation:
This report describes a highly enantioselective oxidative sp3 C–H arylation of N-aryltetrahydroisoquinolines (THIQs) through a dual catalysis platform. The combination of the photoredox catalyst, [Ir(ppy)2(dtbbpy)]PF6, and chiral copper catalysts provide a mild and highly effective sp3 C–H asymmetric arylation of THIQs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Hossain, Asik, Aditya Bhattacharyya und Oliver Reiser. „Copper’s rapid ascent in visible-light photoredox catalysis“. Science 364, Nr. 6439 (02.05.2019): eaav9713. http://dx.doi.org/10.1126/science.aav9713.

Der volle Inhalt der Quelle
Annotation:
Visible-light photoredox catalysis offers a distinct activation mode complementary to thermal transition metal catalyzed reactions. The vast majority of photoredox processes capitalizes on precious metal ruthenium(II) or iridium(III) complexes that serve as single-electron reductants or oxidants in their photoexcited states. As a low-cost alternative, organic dyes are also frequently used but in general suffer from lower photostability. Copper-based photocatalysts are rapidly emerging, offering not only economic and ecological advantages but also otherwise inaccessible inner-sphere mechanisms, which have been successfully applied to challenging transformations. Moreover, the combination of conventional photocatalysts with copper(I) or copper(II) salts has emerged as an efficient dual catalytic system for cross-coupling reactions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu, Yongjun, Wenping Luo, Tingting Xia, Yewen Fang, Chan Du, Xiaoping Jin, Yan Li, Li Zhang, Wan Lei und Hao Wu. „Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis“. Organic Chemistry Frontiers 8, Nr. 8 (2021): 1732–38. http://dx.doi.org/10.1039/d0qo01472a.

Der volle Inhalt der Quelle
Annotation:
Metallaphotoredox catalysis for furan synthesis: The cyclisation of yne-enones proceeds smoothly via consecutive reductive radical-polar crossover and cycloisomerization processes enabled by cooperative photoredox-neutral and copper catalysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tao, Chuanzhou, Bin Wang, Lei Sun, Zhou Liu, Yadong Zhai, Xiulian Zhang und Jian Wang. „Merging visible-light photoredox and copper catalysis in catalytic aerobic oxidation of amines to nitriles“. Organic & Biomolecular Chemistry 15, Nr. 2 (2017): 328–32. http://dx.doi.org/10.1039/c6ob02510b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Dinghai, Na Zhu, Pinhong Chen, Zhenyang Lin und Guosheng Liu. „Enantioselective Decarboxylative Cyanation Employing Cooperative Photoredox Catalysis and Copper Catalysis“. Journal of the American Chemical Society 139, Nr. 44 (30.10.2017): 15632–35. http://dx.doi.org/10.1021/jacs.7b09802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Mastandrea, Marco M., Santiago Cañellas, Xisco Caldentey und Miquel A. Pericàs. „Decarboxylative Hydroalkylation of Alkynes via Dual Copper-Photoredox Catalysis“. ACS Catalysis 10, Nr. 11 (20.05.2020): 6402–8. http://dx.doi.org/10.1021/acscatal.0c01742.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tan, Fen, und You-Quan Zou. „Multicomponent cross coupling via synergistic photoredox and copper catalysis“. Science Bulletin 65, Nr. 18 (September 2020): 1516–18. http://dx.doi.org/10.1016/j.scib.2020.05.026.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Le, Chip, Tiffany Q. Chen, Tao Liang, Patricia Zhang und David W. C. MacMillan. „A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes“. Science 360, Nr. 6392 (31.05.2018): 1010–14. http://dx.doi.org/10.1126/science.aat4133.

Der volle Inhalt der Quelle
Annotation:
Transition metal–catalyzed arene functionalization has been widely used for molecular synthesis over the past century. In this arena, copper catalysis has long been considered a privileged platform due to the propensity of high-valent copper to undergo reductive elimination with a wide variety of coupling fragments. However, the sluggish nature of oxidative addition has limited copper’s capacity to broadly facilitate haloarene coupling protocols. Here, we demonstrate that this copper oxidative addition problem can be overcome with an aryl radical–capture mechanism, wherein the aryl radical is generated through a silyl radical halogen abstraction. This strategy was applied to a general trifluoromethylation of aryl bromides through dual copper-photoredox catalysis. Mechanistic studies support the formation of an open-shell aryl species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Reed, Nicholas L., Madeline I. Herman, Vladimir P. Miltchev und Tehshik P. Yoon. „Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions“. Beilstein Journal of Organic Chemistry 15 (05.02.2019): 351–56. http://dx.doi.org/10.3762/bjoc.15.30.

Der volle Inhalt der Quelle
Annotation:
Oxidative alkene difunctionalization reactions are important in synthetic organic chemistry because they can install polar functional groups onto simple non-polar alkene moieties. Many of the most common methods for these reactions rely upon the reactivity of pre-oxidized electrophilic heteroatom donors that can often be unstable, explosive, or difficult to handle. Herein, we describe a method for alkene oxyamination and diamination that utilizes simple carbamate and urea groups as nucleophilic heteroatom donors. This method uses a tandem copper–photoredox catalyst system that is operationally convenient. The identity of the terminal oxidant is critical in these studies. Ag(I) salts proved to be unique in their ability to turn over the copper cocatalyst without deleteriously impacting the reactivity of the organoradical intermediates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Földesi, Tamás, Gellért Sipos, Réka Adamik, Bálint Nagy, Balázs L. Tóth, Attila Bényei, Krisztina J. Szekeres et al. „Design and application of diimine-based copper(i) complexes in photoredox catalysis“. Organic & Biomolecular Chemistry 17, Nr. 36 (2019): 8343–47. http://dx.doi.org/10.1039/c9ob01331h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Sha, Wanxing, Lingling Deng, Shengyang Ni, Haibo Mei, Jianlin Han und Yi Pan. „Merging Photoredox and Copper Catalysis: Enantioselective Radical Cyanoalkylation of Styrenes“. ACS Catalysis 8, Nr. 8 (19.07.2018): 7489–94. http://dx.doi.org/10.1021/acscatal.8b01863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yong, Xin, Ya-Fei Han, Yang Li, Ren-Jie Song und Jin-Heng Li. „Alkylarylation of styrenes via direct C(sp3)–Br/C(sp2)–H functionalization mediated by photoredox and copper cooperative catalysis“. Chemical Communications 54, Nr. 91 (2018): 12816–19. http://dx.doi.org/10.1039/c8cc07587e.

Der volle Inhalt der Quelle
Annotation:
For straightforward access to various substituted 1,1-diarylalkanes a photoredox-catalyzed and copper-promoted 1,2-alkylarylation reaction of styrenes has been developed, which uses α-carbonyl alkyl bromides and N,N-disubstituted anilines as functionalization reagents.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Liang, Yufan, Xiaheng Zhang und David W. C. MacMillan. „Decarboxylative sp3 C–N coupling via dual copper and photoredox catalysis“. Nature 559, Nr. 7712 (20.06.2018): 83–88. http://dx.doi.org/10.1038/s41586-018-0234-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Jennah, Oumayma, Redouane Beniazza, Cédric Lozach, Damien Jardel, Florian Molton, Carole Duboc, Thierry Buffeteau et al. „Photoredox Catalysis at Copper(II) on Chitosan: Application to Photolatent CuAAC“. Advanced Synthesis & Catalysis 360, Nr. 23 (22.10.2018): 4615–24. http://dx.doi.org/10.1002/adsc.201800964.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Ye, Tian, und Yifeng Wang. „Dual Photoredox/Copper Catalysis Enabled Three-Component Defluorinative Alkylboration of Alkenes“. Chinese Journal of Organic Chemistry 44, Nr. 2 (2024): 663. http://dx.doi.org/10.6023/cjoc202400008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Liu, Yantao, Keyong Zhu, Yuting Kong, Xiao Li, Jie Cui, Yifan Xia, Jingjing Zhao, Shaofeng Duan und Pan Li. „Merging Gold/Copper Catalysis and Copper/Photoredox Catalysis: An Approach to Alkyl Oxazoles from N-Propargylamides“. Journal of Organic Chemistry 86, Nr. 24 (06.12.2021): 18247–56. http://dx.doi.org/10.1021/acs.joc.1c02668.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wu, Xianda, Minghong Chen, Shuiyun Zheng, Jie Wu, Gang Liu und Fu-Sheng He. „Photoinduced Synthesis of Sulfonyl-Containing Phosphorothioates via a Three-Component Reaction“. Molecules 28, Nr. 23 (30.11.2023): 7869. http://dx.doi.org/10.3390/molecules28237869.

Der volle Inhalt der Quelle
Annotation:
Both sulfonyl and phosphorothioate are important privileged structural motifs which are widely presented in pharmaceuticals and agrochemicals. Herein, we describe an efficient approach to synthesizing sulfonyl-containing phosphorothioates by merging photoredox and copper catalysis at room temperature. This protocol is compatible with a wide range of substrates and can be applied to the late-stage modification of complex molecules. Control experiments are conducted to demonstrate the generation of the sulfonyl radical in the transformation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zhang, Hao, Pengxiang Zhang, Min Jiang, Haijun Yang und Hua Fu. „Merging Photoredox with Copper Catalysis: Decarboxylative Alkynylation of α-Amino Acid Derivatives“. Organic Letters 19, Nr. 5 (15.02.2017): 1016–19. http://dx.doi.org/10.1021/acs.orglett.6b03888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Chen, Hui, Weiwei Jin und Shouyun Yu. „Enantioselective Remote C(sp3)–H Cyanation via Dual Photoredox and Copper Catalysis“. Organic Letters 22, Nr. 15 (22.07.2020): 5910–14. http://dx.doi.org/10.1021/acs.orglett.0c02008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Mao, Runze, Adrian Frey, Jonathan Balon und Xile Hu. „Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis“. Nature Catalysis 1, Nr. 2 (Februar 2018): 120–26. http://dx.doi.org/10.1038/s41929-017-0023-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Griffin, Jeremy D., Cortney L. Cavanaugh und David A. Nicewicz. „Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis“. Angewandte Chemie International Edition 56, Nr. 8 (20.01.2017): 2097–100. http://dx.doi.org/10.1002/anie.201610722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Griffin, Jeremy D., Cortney L. Cavanaugh und David A. Nicewicz. „Reversing the Regioselectivity of Halofunctionalization Reactions through Cooperative Photoredox and Copper Catalysis“. Angewandte Chemie 129, Nr. 8 (20.01.2017): 2129–32. http://dx.doi.org/10.1002/ange.201610722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Qian, Siran, Tanya M. Lazarus und David A. Nicewicz. „Enantioselective Amino- and Oxycyanation of Alkenes via Organic Photoredox and Copper Catalysis“. Journal of the American Chemical Society 145, Nr. 33 (14.08.2023): 18247–52. http://dx.doi.org/10.1021/jacs.3c06936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Pampana, V. Kishore Kumar, Vaibhav Pramod Charpe, Arunachalam Sagadevan, Deb Kumar Das, Chun-Cheng Lin, Jih Ru Hwu und Kuo Chu Hwang. „Oxy-sulfonylation of terminal alkynes via C–S coupling enabled by copper photoredox catalysis“. Green Chemistry 23, Nr. 10 (2021): 3569–74. http://dx.doi.org/10.1039/d1gc00736j.

Der volle Inhalt der Quelle
Annotation:
We present a highly efficient and eco-friendly synthesis of β-keto sulfones using simple copper(i) iodide as a catalyst and molecular oxygen as an oxidant under low energy visible light at room temperature.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Zhang, Heng-Rui, Dao-Qian Chen, Ya-Ping Han, Yi-Feng Qiu, Dong-Po Jin und Xue-Yuan Liu. „Merging photoredox with copper catalysis: decarboxylative difluoroacetylation of α,β-unsaturated carboxylic acids with ICF2CO2Et“. Chemical Communications 52, Nr. 79 (2016): 11827–30. http://dx.doi.org/10.1039/c6cc06284a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Yang, Shaoqiang, Miao Chen und Pingping Tang. „Visible‐Light Photoredox‐Catalyzed and Copper‐Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates“. Angewandte Chemie International Edition 58, Nr. 23 (03.06.2019): 7840–44. http://dx.doi.org/10.1002/anie.201901447.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Guo, Xiaoning, und Lizhu Wu. „Enantioselective Carbocyanation of 1,3-Dienes by Dual Visible-Light Photoredox and Copper Catalysis“. Chinese Journal of Organic Chemistry 41, Nr. 6 (2021): 2515. http://dx.doi.org/10.6023/cjoc202100041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Cheng, Zhongming, Pinhong Chen und Guosheng Liu. „Enantioselective Cyanation of Remote C-H Bonds via Cooperative Photoredox and Copper Catalysis“. Acta Chimica Sinica 77, Nr. 9 (2019): 856. http://dx.doi.org/10.6023/a19070252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Frédéric, Christophe J. M., Jérôme Cornil, Mathilde Vandamme, Lidia Dumitrescu, Abdellatif Tikad, Raphaël Robiette und Stéphane P. Vincent. „Highly (Z)-Diastereoselective Synthesis of Trifluoromethylated exo-Glycals via Photoredox and Copper Catalysis“. Organic Letters 20, Nr. 21 (12.10.2018): 6769–73. http://dx.doi.org/10.1021/acs.orglett.8b02891.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Reed, Nicholas L., Madeline I. Herman, Vladimir P. Miltchev und Tehshik P. Yoon. „Photocatalytic Oxyamination of Alkenes: Copper(II) Salts as Terminal Oxidants in Photoredox Catalysis“. Organic Letters 20, Nr. 22 (08.11.2018): 7345–50. http://dx.doi.org/10.1021/acs.orglett.8b03345.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Chen, Hong‐Wei, Fu‐Dong Lu, Ying Cheng, Yue Jia, Liang‐Qiu Lu und Wen‐Jing Xiao. „Asymmetric Deoxygenative Cyanation of Benzyl Alcohols Enabled by Synergistic Photoredox and Copper Catalysis †“. Chinese Journal of Chemistry 38, Nr. 12 (29.10.2020): 1671–75. http://dx.doi.org/10.1002/cjoc.202000309.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Alhomaidan, Lama M., Haja Tar, Abrar S. Alnafisah, Lotfi M. Aroua, Noura KouKi, Fahad M. Alminderej und Jacques Lalevee. „Copper II Complexes Based on Benzimidazole Ligands as a Novel Photoredox Catalysis for Free Radical Polymerization Embedded Gold and Silver Nanoparticles“. Polymers 15, Nr. 5 (03.03.2023): 1289. http://dx.doi.org/10.3390/polym15051289.

Der volle Inhalt der Quelle
Annotation:
The copper II complex’s novel benzimidazole Schiff base ligands were manufactured and gauged as a new photoredox catalyst/photoinitiator amalgamated with triethylamine (TEA) and iodonium salt (Iod) for the polymerization of ethylene glycol diacrylate while exposed to visible light by an LED Lamp at 405 nm with an intensity of 543 mW/cm2 at 28 °C. Gold and silver nanoparticles were obtained through the reactivity of the copper II complexes with amine/Iod salt. The size of NPs was around 1–30 nm. Lastly, the high performance of copper II complexes for photopolymerization containing nanoparticles is presented and examined. Ultimately, the photochemical mechanisms were observed using cyclic voltammetry. The preparation of the polymer nanocomposite nanoparticles in situ was photogenerated during the irradiation LED at 405 nm with an intensity of 543 mW/cm2 at 28 °C process. UV-Vis, FTIR, and TEM analyses were utilized for the determination of the generation of AuNPs and AgNPs which resided within the polymer matrix.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Zhou, Xin, Zhiyuan Peng, Peng George Wang, Qingchao Liu und Tiezheng Jia. „Atom Transfer Radical Addition to Styrenes with Thiosulfonates Enabled by Synergetic Copper/Photoredox Catalysis“. Organic Letters 23, Nr. 3 (11.01.2021): 1054–59. http://dx.doi.org/10.1021/acs.orglett.0c04254.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wang, Guanchao, Ting Zhang, Weiwei Yu, Rui Si, Yuefeng Liu und Zhongkui Zhao. „Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis“. ACS Catalysis 10, Nr. 10 (24.03.2020): 5715–22. http://dx.doi.org/10.1021/acscatal.0c01099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Chen, Jun, Peng-Zi Wang, Bin Lu, Dong Liang, Xiao-Ye Yu, Wen-Jing Xiao und Jia-Rong Chen. „Enantioselective Radical Ring-Opening Cyanation of Oxime Esters by Dual Photoredox and Copper Catalysis“. Organic Letters 21, Nr. 23 (20.11.2019): 9763–68. http://dx.doi.org/10.1021/acs.orglett.9b03970.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Xu, Tianxiao, Tianpeng Cao, Mingcheng Yang, Ruting Xu, Xingliang Nie und Saihu Liao. „Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis“. Organic Letters 22, Nr. 9 (13.04.2020): 3692–96. http://dx.doi.org/10.1021/acs.orglett.0c01180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Perepichka, Inna, Soumen Kundu, Zoë Hearne und Chao-Jun Li. „Efficient merging of copper and photoredox catalysis for the asymmetric cross-dehydrogenative-coupling of alkynes and tetrahydroisoquinolines“. Organic & Biomolecular Chemistry 13, Nr. 2 (2015): 447–51. http://dx.doi.org/10.1039/c4ob02138j.

Der volle Inhalt der Quelle
Annotation:
A highly efficient catalytic asymmetric alkynylation of prochiral CH2 groups in tetrahydroisoquinoline was developed using copper catalyzed cross-dehydrogenative-coupling of sp3 and sp C–H bonds with the assistance of a photocatalyst and visible light.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Oger, Samuel, Hajar Baguia, Tuan-Anh Phan, Titouan Teunens, Jérôme Beaudelot, Cécile Moucheron und Gwilherm Evano. „[Cu(bcp)DPEPhos]+: a Versatile and Efficient Copper-Based Photoredox Catalyst and Photosensitizer“. SynOpen, 10.05.2021. http://dx.doi.org/10.1055/a-1504-6972.

Der volle Inhalt der Quelle
Annotation:
The development of photoredox catalysis has recently enabled the design of remarkably powerful synthetic tools now commonly used in a wide array of chemical transformations, and notably for the generation of radical species under mild, safe and environmentally friendly conditions. This field is largely dominated by ruthenium and iridium complexes, the main alternative to the use of these photocatalysts mostly relying on the use of organic dyes, which poses problems not only in terms of cost - therefore strongly limiting synthetic applications of photocatalysis - but also, more importantly, for the design of new light-mediated transformations. Much less attention has been devoted to the use of copper complexes in photoredox catalysis, despite their strong potential not only as cheaper catalysts but also for the activation of a broader range of substrates. Most copper complexes are indeed known to be poor photocatalysts, mostly due to their short-lived excited states and low redox potentials. Over the last decade, one copper-based copper complex has however emerged as a remarkably efficient and general photoredox catalyst, which is at the core of this Spotlight that highlights its applications as a photosensitizer and its potential.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Talekar, Sanjana S., Sayan Dutta, Manoj V. Mane und Bholanath Maity. „Visible Light‐Induced Photoredox and Copper‐Catalyzed C−N Cross‐Coupling: A Mechanistic Perspective“. European Journal of Organic Chemistry, 06.02.2024. http://dx.doi.org/10.1002/ejoc.202301312.

Der volle Inhalt der Quelle
Annotation:
The formation of C−N bonds is a vital technique in organic synthesis for creating nitrogen‐containing motifs, which has extensive uses in agrochemicals, pharmaceuticals, and natural products. Significant progress has been made in constructing C−N bonds using transition metal catalysis. Nevertheless, utilizing alkyl substrates for the formation of Csp3−N bonds is a notable challenge. Synergistic photoredox and copper catalysis have proven to be a powerful tool to tackle this challenge. The development of this research domain is still in its early stages owing to the chemical and technical complexities of this catalytic process. This review attempts to summarize in‐depth mechanistic understanding of the photoredox/copper dual catalysed C−N coupling reactions taking into consideration of recently reported experimental and theoretical studies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ramani, Arti, Bhargav Desai, Bharatkumar Z. Dholakiya und Togati Naveen. „Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts“. Chemical Communications, 2022. http://dx.doi.org/10.1039/d2cc01611g.

Der volle Inhalt der Quelle
Annotation:
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Yi, Xiangli, und Xile Hu. „Intermolecular oxidative amination of unactivated alkenes by dual photoredox and copper catalysis“. Chemical Science, 2021. http://dx.doi.org/10.1039/d0sc05952h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Li, Shengwen, Guanfeng Ji, Wengui Wang und Shoufeng Wang. „Dual Photoredox/Copper-Catalyzed Selective Difluoromethylthiolation of Remote Unactivated C(sp3) −H Bonds“. Organic & Biomolecular Chemistry, 2025. https://doi.org/10.1039/d5ob00257e.

Der volle Inhalt der Quelle
Annotation:
A photocatalysis/copper dual catalyzed difluoromethylthiolation of remote unactivated C(sp³)−H bonds using N-fluorosulfonamides was reported. The combination of photoredox and copper catalysis led to mild reaction conditions with broad substrate scope....
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Wang, Xu, Bi-Yin Xiao, Qi-Xuan Jiang, Wei Huang und Feng-Hua Zhang. „Thiocyanoalkylation of Alkenes via Dual Photoredox and Copper Catalysis“. Organic Chemistry Frontiers, 2024. http://dx.doi.org/10.1039/d4qo01864h.

Der volle Inhalt der Quelle
Annotation:
Organic thiocyanates are commonly used as an essential organic synthesis intermediate and widely present in various drug molecules and bioactive molecules. Herein, a copper and photoredox catalyzed thiocyanoalkylation reaction of...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Dong, Chun-Lin, Zhi Guan und Yan-Hong He. „Direct Acylcyanation of Aryl Alkenes by Dual Photoredox and Copper Catalysis“. Organic Chemistry Frontiers, 2023. http://dx.doi.org/10.1039/d3qo00592e.

Der volle Inhalt der Quelle
Annotation:
A mild and effective method for the direct acylcyanation of aryl alkenes with aroyl chlorides and trimethylsilyl cyanide (TMSCN) by merging photoredox and copper catalysis is described. This protocol uses...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Wu, Jingjing, Chao Shu, Zhihang Li, Adam Noble und Varinder Kumar Aggarwal. „Photoredox‐Catalyzed Decarboxylative Bromination, Chlorination and Thiocyanation Using Inorganic Salts“. Angewandte Chemie International Edition, 31.07.2023. http://dx.doi.org/10.1002/anie.202309684.

Der volle Inhalt der Quelle
Annotation:
Decarboxylative halogenations of alkyl carboxylic acids are highly valuable reactions for the synthesis of stucturally diverse alkyl halides. However, many reported protocols rely on stoichiometric strong oxidants or highly electrophilic halogenating agents. Herein, we describe visible‐light photoredox‐catalyzed decarboxylative halogenations of N‐hydroxyphthalimide‐activated carboxylic acids that avoid stiochiometric oxidants and use inexpensive inorganic halide salts as the halogenating agents. Brominations with lithium bromide proceed under simple, transition metal‐free conditions using an organic photoredox catalyst and no other additives, whereas dual photoredox–copper‐catalysis is required for chlorinations with lithium chloride. The mild conditions display excellent functional group tolerance, which is demonstrated through the transformation of a diverse range of structurally complex carboxylic acid‐containing natural products into the corresponding alkyl bromides and chlorides. In addition, we show the generality of the dual photoredox–copper‐catalyzed decarboxylative functionalizations with inorganic salts by extension to a thiocyanation with potasium thiocyanide, which was applied to the synthesis of complex alkyl thiocyanates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Villegas-Menares, Alondra, Yannik Sebastian Hansmann, Max Bayas, Camilo Verdugo, Ignacio Erazo, Cesar Zuñiga, Iván Gonzalez et al. „Exploring catalytic activity modulations: photoredox catalysis with substituted copper(i)-dipyridylamine derivatives“. Dalton Transactions, 2025. https://doi.org/10.1039/d4dt03337j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

„Dual Photoredox/Copper Catalysis for C–H Functionalizations“. Synfacts 15, Nr. 04 (19.03.2019): 0403. http://dx.doi.org/10.1055/s-0037-1612320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Deng, Yunshun, Ronghua Lu, Pinhong Chen und Guosheng Liu. „Enantioselective Cyanation of Propargylic C-H Bonds via Cooperative Photoredox and Copper Catalysis“. Chemical Communications, 2023. http://dx.doi.org/10.1039/d3cc00410d.

Der volle Inhalt der Quelle
Annotation:
Herein we report an enantioselective cyanation of propargylic C-H bonds by combining photoredox catalysis with copper-catalyzed radical relay in which the propargylic radicals was generated by intramolecular 1,5-HAT process. This...
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie