Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Covalent Interactions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Covalent Interactions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Covalent Interactions"
Alkorta, Ibon, und Sławomir J. Grabowski. „Non-covalent interactions“. Computational and Theoretical Chemistry 998 (Oktober 2012): 1. http://dx.doi.org/10.1016/j.comptc.2012.07.025.
Der volle Inhalt der QuelleFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO und NATALIA S. BOGATYREVA. „MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS“. Journal of Bioinformatics and Computational Biology 06, Nr. 04 (August 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Der volle Inhalt der QuelleBagus, Paul S., und Connie J. Nelin. „Covalent interactions in oxides“. Journal of Electron Spectroscopy and Related Phenomena 194 (Juni 2014): 37–44. http://dx.doi.org/10.1016/j.elspec.2013.11.004.
Der volle Inhalt der QuelleSchneider, Hans-J�rg. „EDITORIAL: NON-COVALENT INTERACTIONS“. Journal of Physical Organic Chemistry 10, Nr. 5 (Mai 1997): 253. http://dx.doi.org/10.1002/(sici)1099-1395(199705)10:5<253::aid-poc1875>3.0.co;2-r.
Der volle Inhalt der QuelleOlson, R. E. „Ionic-covalent collision interactions“. International Journal of Quantum Chemistry 24, S17 (09.07.2009): 49–64. http://dx.doi.org/10.1002/qua.560240807.
Der volle Inhalt der QuelleMajumdar, Dhrubajyoti, A. Frontera, Rosa M. Gomila, Sourav Das und Kalipada Bankura. „Synthesis, spectroscopic findings and crystal engineering of Pb(ii)–Salen coordination polymers, and supramolecular architectures engineered by σ-hole/spodium/tetrel bonds: a combined experimental and theoretical investigation“. RSC Advances 12, Nr. 10 (2022): 6352–63. http://dx.doi.org/10.1039/d1ra09346k.
Der volle Inhalt der QuelleBjij, Imane, Pritika Ramharack, Shama Khan, Driss Cherqaoui und Mahmoud E. S. Soliman. „Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling“. Molecules 24, Nr. 17 (28.08.2019): 3125. http://dx.doi.org/10.3390/molecules24173125.
Der volle Inhalt der QuelleNovikov, Alexander S. „Non-Covalent Interactions in Polymers“. Polymers 15, Nr. 5 (24.02.2023): 1139. http://dx.doi.org/10.3390/polym15051139.
Der volle Inhalt der QuelleWang, Zhifang, Geng An, Ye Zhu, Xuemin Liu, Yunhua Chen, Hongkai Wu, Yingjun Wang, Xuetao Shi und Chuanbin Mao. „3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks“. Materials Horizons 6, Nr. 4 (2019): 733–42. http://dx.doi.org/10.1039/c8mh01208c.
Der volle Inhalt der QuelleČerný, Jiří, und Pavel Hobza. „Non-covalent interactions in biomacromolecules“. Physical Chemistry Chemical Physics 9, Nr. 39 (2007): 5291. http://dx.doi.org/10.1039/b704781a.
Der volle Inhalt der QuelleDissertationen zum Thema "Covalent Interactions"
Yang, Lixu. „Non-covalent interactions in solution“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8097.
Der volle Inhalt der QuelleCockroft, Scott L. „Understanding non-covalent interactions“. Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434497.
Der volle Inhalt der QuelleBayach, Imene. „Non-covalent interactions in natural products“. Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0050/document.
Der volle Inhalt der QuelleNatural polyphenols form non-covalent complexes in which π-stacking and H-bonding play a key stabilizing role. The dispersion-corrected DFT calculations have paved the way towards reliable description of aggregation processes of natural products. In this work, these methods are applied at i) understanding of stereo- and regio-selective oligostilbenoids biosynthesis; ii) predicting natural antioxidant aggregation within lipid bilayer membrane, which may allow rationalizing the synergism of vitamin E, vitamin C and polyphenols in their antioxidant action; and iii) modulating optical properties of chalcone derivatives
Hubbard, Thomas A. „Non-covalent interactions in lubricant chemistry“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/15935.
Der volle Inhalt der QuelleSIRTORI, F. RICCARDI. „STUDY OF COVALENT AND NON COVALENT INTERACTIONS OF BIOPOLYMER BY MASS SPECTROMETRY“. Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150205.
Der volle Inhalt der QuelleComí, Bonachí Marc. „Biobased polyurethanes with tunable properties through covalent and non-covalent approaches“. Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/454764.
Der volle Inhalt der QuelleEsta tesis está dirigida específicamente al desarrollo de poliuretanos (PU)s funcionalizados en la cadena lateral (FPU)s, sintetizados a partir de dioles funcionales que provienen de ácidos grasos y dos diisocianats diferentes; el diisocianato de isoforona (IPDI) y el diisocianato de hexametileno (HDI). Estos nuevos FPUs presentan una amina terciaria y grupos alquilo, alilo, propargilo o la combinación de éstos en posiciones de cadena lateral. Posteriormente los FPUs se modifican mediante dos mecanismos de post-polimerización basados en enlaces covalentes o en enlaces no covalentes.En el primer caso, se llevan a cabo una serie de reacciones fotoiniciadas de acoplamiento tiol-eno/ino entre el grupo alilo y propargilo que presentan los FPUs (formados a partir de IPDI), y tioglicerol. Los hidroxi-PUs obtenidos, exhiben una mejora de su carácter hidrófilo. Alternativamente, los FPUs que contienen sólo una amina terciaria como grupo funcional situado en la cadena lateral del PU, se mezclan con diferentes ácidos carboxílicos mediante una reacción de ácido base. Los PUs supramoleculares resultantes (SPU)s se caracterizan por espectroscopia para verificar la presencia de enlaces iónicos de hidrógeno que unen las cadenas de PU formando interacciones físicas. Además, se demuestra la correlación existente entre la estructura química y las propiedades térmicas y mecánicas de los materiales sintetizados. Estos materiales presentan prometedoras propiedades adaptativas. Por ejemplo, resaltan las buenas propiedades de regeneración y reciclaje/remodelación, debidas al carácter reversible de las interacciones físicas. Adicionalmente, estos elastómeros poseen una inherente capacidad de autorautorreparación, que en términos prácticos se podría ver como una mejora de su sostenibilidad. Finalmente, se sintetizan redes de PU que tienen un doble carácter estructural mediante enlaces iónicos de hidrógeno dinámicos y entrecruzamientos covalentes. La variación de la densidad de entrecruzamiento covalente introducido para cada una de estas redes produce un ajuste sistemático de las propiedades mecánicas y la sensibilidad del material al calor. Esta preparación demuestra una vía simple y eficaz para la fabricación de poliuretanos multifuncionales.
This Thesis is addressed to the development of side-chain functionalized polyurethanes (FPU)s, with enhanced properties, made from fatty acid-based functional diols and two different diisocyanates; isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). The novel FPUs present tertiary amine and alkyl, allyl, propargyl moieties or the combination of these, as side-chain positions groups. The FPUs were further modified via two post-polymerization mechanisms based on covalent or non-covalent bonds. In the first case, photoinitiated thiol-ene/yne coupling reaction between allyl, propargyl-functionalized PUs (based on IPDI) and thioglycerol was carried out. Obtained hydroxyl-PUs exhibit different thermal and mechanical properties in comparison with precursor PUs. Moreover, the incorporation of hydroxyl groups leads to PUs with enhanced hydrophilicity. Alternatively, the FPU (based on IPDI) containing only tertiary amine pendant group was mixed with different carboxylic acids in an acid-base reaction. Supramolecular ionic PUs were characterized by spectroscopic tools to verify the presence of ionic hydrogen bond as ionic interaction. Correlation between structure and thermal and mechanical properties was demonstrated. Samples show rapid thermal reversibility and recyclability thanks to the reversible bonds. In addition, elastomeric supramolecular PUs networks were prepared from HDI and aminodiol. The resulting materials exhibit some promising adaptive material properties such as effective energy dissipation upon deformation through unzipping the ionic hydrogen bonding network, combined with good shape-regeneration property and recycling/reshaping capability arising from their recoverable nature. More importantly, the resulting biobased elastomers possess the inherent self-healing ability, which can be seen as an upgrade of their sustainability.A novel thermo-reversible network is constructed by the thiol-ene functionalized polyurethane via dynamic ionic hydrogen bonds and covalent cross-links. By varying the covalent cross-linking density, the mechanical properties and the stimuli-responsive behaviour can be systematically tuned. This synthesis demonstrates a simple and effective pathway to fabricate multifunctional polyurethanes with desired functions.
Mati, Ioulia. „Molecular torsion balances for quantifying non-covalent interactions“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7610.
Der volle Inhalt der QuelleBenevelli, Francesca. „Solid-state NMR characterisation of non-covalent interactions“. Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620286.
Der volle Inhalt der QuelleAbuajwa, Wissam. „Non-covalent interactions of C60 fullerene and its derivatives“. Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.588068.
Der volle Inhalt der QuelleAdam, Catherine. „Molecular balances for measuring non-covalent interactions in solution“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16466.
Der volle Inhalt der QuelleBücher zum Thema "Covalent Interactions"
Hobza, Pavel. Non-covalent interactions. Cambridge: Royal Society of Chemistry, 2009.
Den vollen Inhalt der Quelle findenMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich und Armando J. L. Pombeiro, Hrsg. Non-covalent Interactions in the Synthesis and Design of New Compounds. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.
Der volle Inhalt der QuelleSinclair, Andrew Jamieson. Using non-covalent interaction to accelerate a [three plus two] dipolar cycloaddition reaction. Birmingham: University of Birmingham, 2000.
Den vollen Inhalt der Quelle findenNon-Covalent Interactions. Cambridge: Royal Society of Chemistry, 2009. http://dx.doi.org/10.1039/9781847559906.
Der volle Inhalt der QuelleNon-Covalent Interactions in Proteins. World Scientific Publishing Co Pte Ltd, 2021.
Den vollen Inhalt der Quelle findenKarshikoff, Andrey. Non-Covalent Interactions in Proteins. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/12035.
Der volle Inhalt der QuelleKarshikoff, Andrey. Non-Covalent Interactions in Proteins. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/p477.
Der volle Inhalt der QuelleBarbier, Vincent, und Olivier R. P. David. Non-Covalent Interactions in Organocatalysis. Elsevier, 2018.
Den vollen Inhalt der Quelle findenNon-covalent Interactions in Proteins. Imperial College Press, 2006.
Den vollen Inhalt der Quelle findenHobza, Pavel, Jonathan Hirst, Kenneth D. Jordan, Carmay Lim und Klaus Muller-Dethlefs. Non-Covalent Interactions: Theory and Experiment. Royal Society of Chemistry, The, 2009.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Covalent Interactions"
Oscarsson, S., und J. Porath. „Covalent Chromatography“. In Molecular Interactions in Bioseparations, 403–13. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1872-7_26.
Der volle Inhalt der QuelleMaharramov, Abel M., Kamran T. Mahmudov, Maximilian N. Kopylovich, M. Fátima C. Guedes da Silva und Armando J. L. Pombeiro. „Activation of Covalent Bonds Through Non-covalent Interactions“. In Non-covalent Interactions in the Synthesis and Design of New Compounds, 1–21. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch1.
Der volle Inhalt der QuelleYon-Kahn, Jeannine, und Guy Hervé. „Regulation by Non-Covalent Interactions“. In Molecular and Cellular Enzymology, 547–629. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01228-0_14.
Der volle Inhalt der QuelleCheng, Yunfeng, Xiaochuan Yang und Binghe Wang. „Covalent Interactions in Chemosensor Design“. In Chemosensors, 25–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118019580.ch3.
Der volle Inhalt der QuelleHunter, Christopher. „Non-Covalent Interactions Between Aromatic Molecules“. In From Simplicity to Complexity in Chemistry — and Beyond, 113–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-49368-3_9.
Der volle Inhalt der QuelleAplin, Robin T., und Carol V. Robinson. „Electrospray Ionization Mass Spectrometry: The Observation of Covalent, Ionic and Non-Covalent Interactions.“ In Mass Spectrometry in the Biological Sciences, 69–84. Totowa, NJ: Humana Press, 1996. http://dx.doi.org/10.1007/978-1-4612-0229-5_4.
Der volle Inhalt der QuelleD’Urso, Alessandro, Maria Elena Fragalà und Roberto Purrello. „Non-Covalent Interactions of Porphyrinoids with Duplex DNA“. In Topics in Heterocyclic Chemistry, 139–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/7081_2013_113.
Der volle Inhalt der QuelleKataev, Evgeny A. „Non-covalent Interactions in the Synthesis of Macrocycles“. In Non-covalent Interactions in the Synthesis and Design of New Compounds, 63–82. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119113874.ch4.
Der volle Inhalt der QuelleSagan, Filip, und Mariusz P. Mitoraj. „Non-covalent Interactions in Selected Transition Metal Complexes“. In Transition Metals in Coordination Environments, 65–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_3.
Der volle Inhalt der QuelleChetverina, Helena V., und Alexander B. Chetverin. „Identifying RNA Recombination Events and Non-covalent RNA–RNA Interactions with the Molecular Colony Technique“. In RNA-RNA Interactions, 1–25. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1896-6_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Covalent Interactions"
Sanz, M., Jackson Tang, Elena Alonso, Isabel Peï¾–a, Donatella Loru, Ecaterina Burevschi, Shefali Saxena und S. Murugachandran. „INTERMOLECULAR NON-COVALENT INTERACTIONS REVEALED BY BROADBAND ROTATIONAL SPECTROSCOPY“. In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb01.
Der volle Inhalt der QuelleCaminati, Walther, Emilio Cocinero, Alberto Lesarri, Montserrat Vallejo-López, Lorenzo Spada, Gang Feng, Luca Evangelisti und Qian Gou. „NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS“. In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.rj16.
Der volle Inhalt der QuelleFoguel, Lidor, Patrick Vaccaro und Zachary Vealey. „MICROSOLVATION AND THE EFFECTS OF NON-COVALENT INTERACTIONS ON INTRAMOLECULAR DYNAMICS“. In 72nd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2017. http://dx.doi.org/10.15278/isms.2017.wd02.
Der volle Inhalt der QuelleChoe, Junseok, Keonwoo Kim, Minjae Ju, Sumin Lee und Jaewoo Kang. „Improved Binding Affinity Prediction Using Non-Covalent Interactions and Graph Integration“. In 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2022. http://dx.doi.org/10.1109/bigcomp54360.2022.00079.
Der volle Inhalt der QuelleMelandri, Sonia, Laura Favero, Camilla Calabrese, Weixing Li, Imanol Gutierrez, Assimo Maris und Luca Evangelisti. „TUNING OF NON-COVALENT INTERACTIONS IN MOLECULAR COMPLEXES OF FLUORINATED AROMATIC COMPOUNDS“. In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.wk08.
Der volle Inhalt der QuelleOliveira, Vytor, und Elfi Kraka. „The intrinsic strength of non-covalent interactions described by coupled cluster theory“. In VII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Editora Letra1, 2018. http://dx.doi.org/10.21826/9788563800374068.
Der volle Inhalt der QuelleMelandri, Sonia, Laura Favero, Weixing Li, Camilla Calabrese, Imanol Usabiaga, Luca Evangelisti und Assimo Maris. „NON-COVALENT INTERACTIONS IN COMPLEXES OF FLUORINATED AROMATIC RINGS INVESTIGATED BY ROTATIONAL SPECTROSCOPY“. In 74th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2019. http://dx.doi.org/10.15278/isms.2019.tb05.
Der volle Inhalt der QuelleBelov, S. P., B. A. McElmurry, F. F. Willaert, R. R. Lucchese und J. Bevan. „Co-axially configured supersonic jet spectrometer for submillimeter investigations of non-covalent interactions“. In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665616.
Der volle Inhalt der QuelleRackers, Joshua. „What can machine learning teach us about the limits of electron correlation?.“ In Proposed for presentation at the Non-Covalent Interactions in Large Molecules and Extended Materials in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884653.
Der volle Inhalt der QuelleMa, Yingxian, Liqiang Huang, Zhi Zhu, Yurou Du, Jie Lai und Jianchun Guo. „A Supramolecular Thickener Based on Non-Covalent Enhancement Mechanism“. In SPE International Conference on Oilfield Chemistry. SPE, 2021. http://dx.doi.org/10.2118/204299-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Covalent Interactions"
Nelson, Nathan, und Charles F. Yocum. Structure, Function and Utilization of Plant Photosynthetic Reaction Centers. United States Department of Agriculture, September 2012. http://dx.doi.org/10.32747/2012.7699846.bard.
Der volle Inhalt der Quelle