Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CRYPTOGRAPHI“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CRYPTOGRAPHI" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CRYPTOGRAPHI"
WANG, XINGYUAN, MING LIU und NINI GU. „TWO NEW CHAOTIC CRYPTOGRAPHIES BASED ON DIFFERENT ATTRACTOR-PARTITION ALGORITHMS“. International Journal of Modern Physics B 21, Nr. 27 (30.10.2007): 4739–50. http://dx.doi.org/10.1142/s0217979207038071.
Der volle Inhalt der QuelleYan, Yuhan. „The Overview of Elliptic Curve Cryptography (ECC)“. Journal of Physics: Conference Series 2386, Nr. 1 (01.12.2022): 012019. http://dx.doi.org/10.1088/1742-6596/2386/1/012019.
Der volle Inhalt der QuelleGoldreich, Oded. „Cryptography and cryptographic protocols“. Distributed Computing 16, Nr. 2-3 (01.09.2003): 177–99. http://dx.doi.org/10.1007/s00446-002-0077-1.
Der volle Inhalt der QuelleBAFTIU, Naim. „Analysis and use of Cryptography techniques in programming language C#: Coding and Decoding“. PRIZREN SOCIAL SCIENCE JOURNAL 4, Nr. 3 (31.12.2020): 1–10. http://dx.doi.org/10.32936/pssj.v4i3.165.
Der volle Inhalt der Quelle., Abhishek Misal, und Tin Mar Kyi . „Virtual Cryptopgraphic Technique and Bit-plane Segmentation Stegnegography for Security in Bioinformatics and Biomedical Applications“. CSVTU International Journal of Biotechnology Bioinformatics and Biomedical 4, Nr. 2 (03.09.2019): 59–66. http://dx.doi.org/10.30732/ijbbb.20190402005.
Der volle Inhalt der QuelleAnilkumar, Chunduru, Bhavani Gorle und Kinthali Sowmya. „A Secure Method of Communication in Conventional Cryptography using Quantum Key Distribution“. Applied and Computational Engineering 8, Nr. 1 (01.08.2023): 68–73. http://dx.doi.org/10.54254/2755-2721/8/20230083.
Der volle Inhalt der QuellePaul, Sebastian, und Melanie Niethammer. „On the importance of cryptographic agility for industrial automation“. at - Automatisierungstechnik 67, Nr. 5 (27.05.2019): 402–16. http://dx.doi.org/10.1515/auto-2019-0019.
Der volle Inhalt der QuelleVictor, Melvin, D. David Winster Praveenraj, Sasirekha R, Ahmed Alkhayyat und Abdullayeva Shakhzoda. „Cryptography: Advances in Secure Communication and Data Protection“. E3S Web of Conferences 399 (2023): 07010. http://dx.doi.org/10.1051/e3sconf/202339907010.
Der volle Inhalt der QuelleRusetskaya, Irina A. „CRYPTOGRAPHY. FROM THE PAST TO THE FUTURE“. RSUH/RGGU Bulletin. Series Information Science. Information Security. Mathematics, Nr. 4 (2021): 47–57. http://dx.doi.org/10.28995/2686-679x-2021-4-47-57.
Der volle Inhalt der QuelleSingh, Sukhveer. „Investigation of Cryptography for Secure Communication and Data Privacy Applications“. Mathematical Statistician and Engineering Applications 70, Nr. 1 (31.01.2021): 551–60. http://dx.doi.org/10.17762/msea.v70i1.2508.
Der volle Inhalt der QuelleDissertationen zum Thema "CRYPTOGRAPHI"
Poschmann, Axel York. „Lightweight cryptography cryptographic engineering for a pervasive world“. Berlin Bochum Dülmen London Paris Europ. Univ.-Verl, 2009. http://d-nb.info/996578153/04.
Der volle Inhalt der QuelleAlmeida, Braga Daniel de. „Cryptography in the wild : the security of cryptographic implementations“. Thesis, Rennes 1, 2022. http://www.theses.fr/2022REN1S067.
Der volle Inhalt der QuelleSide-channel attacks are daunting for cryptographic implementations. Despite past attacks, and the proliferation of verification tools, these attacks still affect many implementations. In this manuscript, we address two aspects of this problem, centered around attack and defense. We unveil several microarchitectural side-channel attacks on implementations of PAKE protocols. In particular, we exposed attacks on Dragonfly, used in the new Wi-Fi standard WPA3, and SRP, deployed in many software such as ProtonMail or Apple HomeKit. We also explored the lack of use by developers of tools to detect such attacks. We questioned developers from various cryptographic projects to identify the origin of this lack. From their answers, we issued recommendations. Finally, in order to stop the spiral of attack-patch on Dragonfly implementations, we provide a formally verified implementation of the cryptographic layer of the protocol, whose execution is secret-independent
Scerri, Guillaume. „Proof of security protocols revisited“. Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0002/document.
Der volle Inhalt der QuelleWith the rise of the Internet the use of cryptographic protocols became ubiquitous. Considering the criticality and complexity of these protocols, there is an important need of formal verification.In order to obtain formal proofs of cryptographic protocols, two main attacker models exist: the symbolic model and the computational model. The symbolic model defines the attacker capabilities as a fixed set of rules. On the other hand, the computational model describes only the attacker's limitations by stating that it may break some hard problems. While the former is quiteabstract and convenient for automating proofs the later offers much stronger guarantees.There is a gap between the guarantees offered by these two models due to the fact the symbolic model defines what the adversary may do while the computational model describes what it may not do. In 2012 Bana and Comon devised a new symbolic model in which the attacker's limitations are axiomatised. In addition provided that the (computational semantics) of the axioms follows from the cryptographic hypotheses, proving security in this symbolic model yields security in the computational model.The possibility of automating proofs in this model (and finding axioms general enough to prove a large class of protocols) was left open in the original paper. In this thesis we provide with an efficient decision procedure for a general class of axioms. In addition we propose a tool (SCARY) implementing this decision procedure. Experimental results of our tool shows that the axioms we designed for modelling security of encryption are general enough to prove a large class of protocols
Minaud, Brice. „Analyse de primitives cryptographiques récentes“. Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S066/document.
Der volle Inhalt der QuelleIn this thesis, we study the security of some recent cryptographic primitives, both symmetric and asymmetric. Along the way we also consider white-box primitives, which may be regarded as a middle ground between symmetric and asymmetric cryptography. We begin by showing the existence of non-trivial linear maps commuting with the round function of some recent block cipher designs, which give rise to self-similarity and invariant subspace attacks. We then move on to the structural cryptanalysis of ASASA schemes, where nonlinear layers S alternate with affine layers A. Our structural cryptanalysis applies to symmetric, multivariate, as well as white-box instances. Focusing on the white-box model of incompressibility, we then build an efficient block cipher and key generator that offer provable security guarantees. Finally, on the purely asymmetric side, we describe a polynomial attack against a recent multilinear map proposal
Bultel, Xavier. „Mécanismes de délégation pour les primitives de cryptographie à clé publique“. Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC100.
Der volle Inhalt der QuellePaindavoine, Marie. „Méthodes de calculs sur les données chiffrées“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1009/document.
Der volle Inhalt der QuelleNowadays, encryption and services issued of ``big data" are at odds. Indeed, encryption is about protecting users privacy, while big data is about analyzing users data. Being increasingly concerned about security, users tend to encrypt their sensitive data that are subject to be accessed by other parties, including service providers. This hinders the execution of services requiring some kind of computation on users data, which makes users under obligation to choose between these services or their private life. We address this challenge in this thesis by following two directions.In the first part of this thesis, we study fully homomorphic encryption that makes possible to perform arbitrary computation on encrypted data. However, this kind of encryption is still inefficient, and this is due in part to the frequent execution of a costly procedure throughout evaluation, namely the bootstrapping. Thus, efficiency is inversely proportional to the number of bootstrappings needed to evaluate functions on encrypted data. In this thesis, we prove that finding such a minimum is NP-complete. In addition, we design a new method that efficiently finds a good approximation of it. In the second part, we design schemes that allow a precise functionality. The first one is verifiable deduplication on encrypted data, which allows a server to be sure that it keeps only one copy of each file uploaded, even if the files are encrypted, resulting in an optimization of the storage resources. The second one is intrusion detection over encrypted traffic. Current encryption techniques blinds intrusion detection services, putting the final user at risks. Our results permit to reconcile users' right to privacy and their need of keeping their network clear of all intrusion
Wen, Weiqiang. „Contributions to the hardness foundations of lattice-based cryptography“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN070/document.
Der volle Inhalt der QuelleLattice-based cryptography is one of the most competitive candidates for protecting privacy, both in current applications and post quantum period. The central problem that serves as the hardness foundation of lattice-based cryptography is called the Learning with Errors (LWE). It asks to solve a noisy equation system, which is linear and over-determined modulo q. Normally, we call LWE problem as an average-case problem as all the coefficients in the equation system are randomly chosen modulo q. The LWE problem is conjectured to be hard even wtih a large scale quantum computer. It is at least as hard as standard problems defined in the lattices, such as Bounded Distance Decoding (BDD) and unique Shortest Vector Problem (uSVP). Finally, the best known algorithm for solving these problems is BKZ, which is very expensive. In this thesis, we study the quantum hardness of LWE, the hardness relations between the underlying problems BDD and uSVP, and the practical performance of the BKZ algorithm. First, we give a strong evidence of quantum hardness of LWE. Concretely, we consider a relaxed version of the quantum version of dihedral coset problem and show an computational equivalence between LWE and this problem. Second, we tighten the hardness relation between BDD and uSVP. More precisely, We improve the reduction from BDD to uSVP by a factor √2, compared to the one by Lyubashevsky and Micciancio. Third, we propose a more precise simulator for BKZ. In the last work, we propose the first probabilistic simulotor for BKZ, which can pridict the practical behavior of BKZ very precisely
Löken, Nils [Verfasser]. „Cryptography for the crowd : a study of cryptographic schemes with applications to crowd work / Nils Löken“. Paderborn : Universitätsbibliothek, 2019. http://d-nb.info/1203205074/34.
Der volle Inhalt der QuelleLambin, Baptiste. „Optimization of core components of block ciphers“. Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S036/document.
Der volle Inhalt der QuelleAlong with new cryptanalysis techniques, the security of block ciphers is always evolving. When designing new block ciphers, we thus need to consider these new techniques during the security analysis. In this thesis, we show how to build some core operations for block ciphers to improve the security against some attacks. We first start by describing a method to find optimal (according to some criterion) even-odd permutations for a Generalized Feistel Network. Using a new characterization and an efficient algorithm, we are able to solve a 10-years old problem. We then give new cryptanalysis techniques to improve the division property, along with a new proven optimal criterion for designing S-boxes. We continue with new observations for the design of an alternative key-schedule for AES. We thus give a new key-schedule, which is both more efficient and more secure against some attacks compared to the original one. Finally, we describe a very efficient generic algorithm to break most proposals in white-box cryptography, as well as a dedicated attack on a previously not analyzed scheme, leading to a key-recovery attack in a few seconds
Delaplace, Claire. „Algorithmes d'algèbre linéaire pour la cryptographie“. Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S045/document.
Der volle Inhalt der QuelleIn this thesis, we discuss algorithmic aspects of three different problems, related to cryptography. The first part is devoted to sparse linear algebra. We present a new Gaussian elimination algorithm for sparse matrices whose coefficients are exact, along with a new pivots selection heuristic, which make the whole procedure particularly efficient in some cases. The second part treats with a variant of the Birthday Problem with three lists. This problem, which we call 3XOR problem, intuitively consists in finding three uniformly random bit-strings of fixed length, such that their XOR is the zero string. We discuss practical considerations arising from this problem, and propose a new algorithm which is faster in theory as well as in practice than previous ones. The third part is related to the learning with errors (LWE) problem. This problem is known for being one of the main hard problems on which lattice-based cryptography relies. We first introduce a pseudorandom generator, based on the de-randomised learning with rounding variant of LWE, whose running time is competitive with AES. Second, we present a variant of LWE over the ring of integers. We show that in this case the problem is easier to solve, and we propose an interesting application, revisiting a side-channel attack against the BLISS signature scheme
Bücher zum Thema "CRYPTOGRAPHI"
Sokolov, Artem, und Oleg Zhdanov. Cryptographic constructions on the basis of functions of multivalued logic. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1045434.
Der volle Inhalt der QuelleMi ma xue yuan li yu shi jian: Di er ban= Cryptography theory and practice. Beijing: Dian zi gong ye chu ban she, 2003.
Den vollen Inhalt der Quelle findenChurchhouse, R. F. Codes and ciphers: Julius Caesar, the Enigma, and the internet. Cambridge: Cambridge University Press, 2002.
Den vollen Inhalt der Quelle findenCodes and cryptography. Oxford [Oxfordshire]: Clarendon Press, 1988.
Den vollen Inhalt der Quelle findenAn introduction to cryptology. Boston: Kluwer Academic Publishers, 1988.
Den vollen Inhalt der Quelle findenéd, Walker M., Hrsg. Cryptography and coding: 7th IMA conference, Cirencester, UK, December 20-22, 1999 : proceedings. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenStinson, Douglas R., und Maura B. Paterson. Cryptography. Fourth edition. | Boca Raton : CRC Press, Taylor & Francis: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315282497.
Der volle Inhalt der QuelleRubinstein-Salzedo, Simon. Cryptography. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94818-8.
Der volle Inhalt der QuelleLevy, Steven. Crypto: How the code rebels beat the government-saving privacy in the digital age. New York: Viking, 2001.
Den vollen Inhalt der Quelle findenC, Washington Lawrence, Hrsg. Introduction to cryptography: With coding theory. Upper Saddle River, NJ: Prentice Hall, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "CRYPTOGRAPHI"
Hofheinz, Dennis, und Eike Kiltz. „Scalable Cryptography“. In Lecture Notes in Computer Science, 169–78. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21534-6_9.
Der volle Inhalt der QuelleLin, Weyde. „Digital Signature“. In Trends in Data Protection and Encryption Technologies, 77–81. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33386-6_15.
Der volle Inhalt der QuelleZheng, Zhiyong, Kun Tian und Fengxia Liu. „A Generalization of NTRUencrypt“. In Financial Mathematics and Fintech, 175–88. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_7.
Der volle Inhalt der QuelleMoosavi, Sanaz Rahimi, und Arman Izadifar. „End-to-End Security Scheme for E-Health Systems Using DNA-Based ECC“. In Silicon Valley Cybersecurity Conference, 77–89. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96057-5_6.
Der volle Inhalt der QuelleBuchmann, Johannes. „Sustainable Cryptography“. In International Symposium on Mathematics, Quantum Theory, and Cryptography, 3. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_1.
Der volle Inhalt der QuelleJo, Hyungrok, Shingo Sugiyama und Yoshinori Yamasaki. „Ramanujan Graphs for Post-Quantum Cryptography“. In International Symposium on Mathematics, Quantum Theory, and Cryptography, 231–50. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_17.
Der volle Inhalt der QuelleCachin, Christian. „Multi-Party Threshold Cryptography“. In Trends in Data Protection and Encryption Technologies, 65–69. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33386-6_13.
Der volle Inhalt der QuelleCook, Debra L., John Ioannidis, Angelos D. Keromytis und Jake Luck. „CryptoGraphics: Secret Key Cryptography Using Graphics Cards“. In Lecture Notes in Computer Science, 334–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30574-3_23.
Der volle Inhalt der QuelleSommerhalder, Maria. „Hardware Security Module“. In Trends in Data Protection and Encryption Technologies, 83–87. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33386-6_16.
Der volle Inhalt der QuelleHardy, Yorick, und Willi-Hans Steeb. „Cryptography“. In Classical and Quantum Computing, 215–28. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8366-5_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CRYPTOGRAPHI"
Faz-Hernández, Armando, und Julio López. „High-Performance Elliptic Curve Cryptography: A SIMD Approach to Modern Curves“. In Concurso de Teses e Dissertações. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/ctd.2023.230156.
Der volle Inhalt der QuelleЛацин, Семен Михайлович, und Наталья Александровна Борсук. „ANALYSIS OF ELLIPTICAL CRYPTOGRAPHY ON THE EXAMPLE OF THE BITCOIN BLOCKCHAIN“. In Методики фундаментальных и прикладных научных исследований: сборник статей всероссийской научной конференции (Санкт-Петербург, Декабрь 2022). Crossref, 2023. http://dx.doi.org/10.37539/221223.2022.83.11.008.
Der volle Inhalt der QuelleSlutsky, Boris A., R. Rao, L. Tancevski, P. C. Sun und Y. Fainman. „Information Leakage Estimates in Quantum Cryptography“. In Optics in Computing. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oc.1997.owc.2.
Der volle Inhalt der QuelleDuta, Cristinaloredana, und Laura Gheorghe. „ELEARNING FRAMEWORK FOR UNDERSTANDING CRYPTOGRAPHY AT ALL LEVELS“. In eLSE 2015. Carol I National Defence University Publishing House, 2015. http://dx.doi.org/10.12753/2066-026x-15-026.
Der volle Inhalt der QuellePacheco, Rodrigo, Douglas Braga, Iago Passos, Thiago Araújo, Vinícius Lagrota und Murilo Coutinho. „libharpia: a New Cryptographic Library for Brazilian Elections“. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sbseg.2022.224098.
Der volle Inhalt der QuelleRodrigues, Gustavo Eloi de P., Alexandre M. Braga und Ricardo Dahab. „A machine learning approach to detect misuse of cryptographic APIs in source code“. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/sbseg.2020.19223.
Der volle Inhalt der QuelleBraga, Alexandre, und Ricardo Dahab. „A Longitudinal and Retrospective Study on How Developers Misuse Cryptography in Online Communities“. In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/sbseg.2017.19488.
Der volle Inhalt der QuelleAdebisi Ojo, Segun, Aderonke Favour-Bethy Thompson, Mary O Iyare und Boniface Kayode Alese. „On Information Integrity Measurement with Secure Hash Algorithm (SHA)“. In InSITE 2015: Informing Science + IT Education Conferences: USA. Informing Science Institute, 2015. http://dx.doi.org/10.28945/2154.
Der volle Inhalt der QuelleXia, Ruiqi, Manman Li und Shaozhen Chen. „Cryptographic Algorithms Identification based on Deep Learning“. In 3rd International Conference on Artificial Intelligence and Machine Learning (CAIML 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.121217.
Der volle Inhalt der QuelleA. Gunathilake, Nilupulee, Ahmed Al-Dubai, William J. Buchanan und Owen Lo. „Electromagnetic Analysis of an Ultra-Lightweight Cipher: PRESENT“. In 10th International Conference on Information Technology Convergence and Services (ITCSE 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110915.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CRYPTOGRAPHI"
de Abreu, Jonas, und Mariana Cunha e Melo. Extending Pix: An approach to offline Dynamic QR Code generation. Center for Technology and Public Interest, SL, April 2023. http://dx.doi.org/10.59262/9qu6ex.
Der volle Inhalt der QuelleMouha, Nicky. Review of the Advanced Encryption Standard. National Institute of Standards and Technology, Juli 2021. http://dx.doi.org/10.6028/nist.ir.8319.
Der volle Inhalt der QuelleBlake-Wilson, S., D. Brown und P. Lambert. Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS). RFC Editor, April 2002. http://dx.doi.org/10.17487/rfc3278.
Der volle Inhalt der QuelleTurner, S., und D. Brown. Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS). RFC Editor, Januar 2010. http://dx.doi.org/10.17487/rfc5753.
Der volle Inhalt der QuelleBarker, William, William Polk und Murugiah Souppaya. Getting Ready for Post-Quantum Cryptography: Exploring Challenges Associated with Adopting and Using Post-Quantum Cryptographic Algorithms. National Institute of Standards and Technology, April 2021. http://dx.doi.org/10.6028/nist.cswp.04282021.
Der volle Inhalt der QuelleBarker, William. Getting Ready for Post-Quantum Cryptography: Exploring Challenges Associated with Adopting and Using Post-Quantum Cryptographic Algorithms. Gaithersburg, MD: National Institute of Standards and Technology, 2021. http://dx.doi.org/10.6028/nist.cswp.15.
Der volle Inhalt der QuelleTaiber, Joachim. Unsettled Topics Concerning the Impact of Quantum Technologies on Automotive Cybersecurity. SAE International, Dezember 2020. http://dx.doi.org/10.4271/epr2020026.
Der volle Inhalt der QuelleHousley, R. Cryptographic Message Syntax. RFC Editor, Juni 1999. http://dx.doi.org/10.17487/rfc2630.
Der volle Inhalt der QuelleBaker, F., B. Lindell und M. Talwar. RSVP Cryptographic Authentication. RFC Editor, Januar 2000. http://dx.doi.org/10.17487/rfc2747.
Der volle Inhalt der QuelleAtkinson, R., und M. Fanto. RIPv2 Cryptographic Authentication. RFC Editor, Februar 2007. http://dx.doi.org/10.17487/rfc4822.
Der volle Inhalt der Quelle